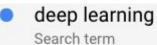


Recent Advances in Artificial Intelligence and the Implications for Computer System Design

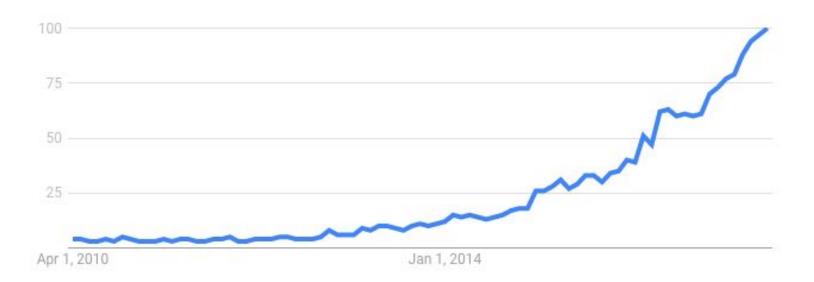
Jeff Dean Google Brain team g.co/brain

Presenting the work of **many** people at Google

Deep learning is causing a machine learning revolution



Interest over time



Deep Learning

Modern Reincarnation of Artificial Neural Networks

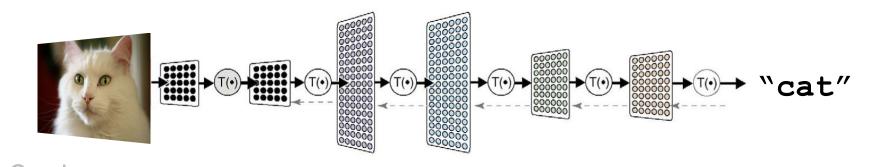
Collection of simple trainable mathematical units, organized in layers, that work together to solve complicated tasks

What's New

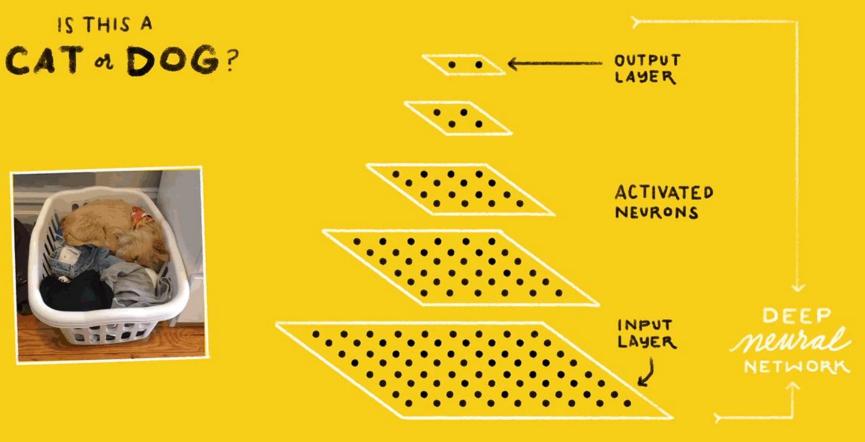
new network architectures, new training math, ***scale***

Key Benefit

Learns features from raw, heterogeneous, noisy data No explicit feature engineering required



CAT DOG



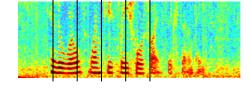
Pixels:

"lion"

Pixels:

"lion"

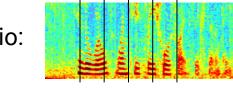
Audio:



"How cold is it outside?"

Pixels:

Audio:



"Hello, how are you?"

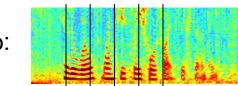
"lion"

"How cold is it outside?"

"Bonjour, comment allez-vous?"

Pixels:

Audio:



"Hello, how are you?"

Pixels:

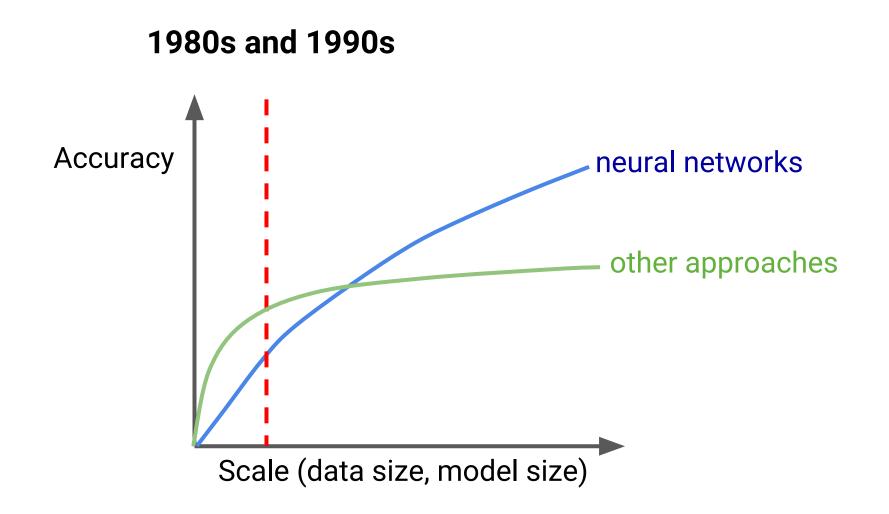
"lion"

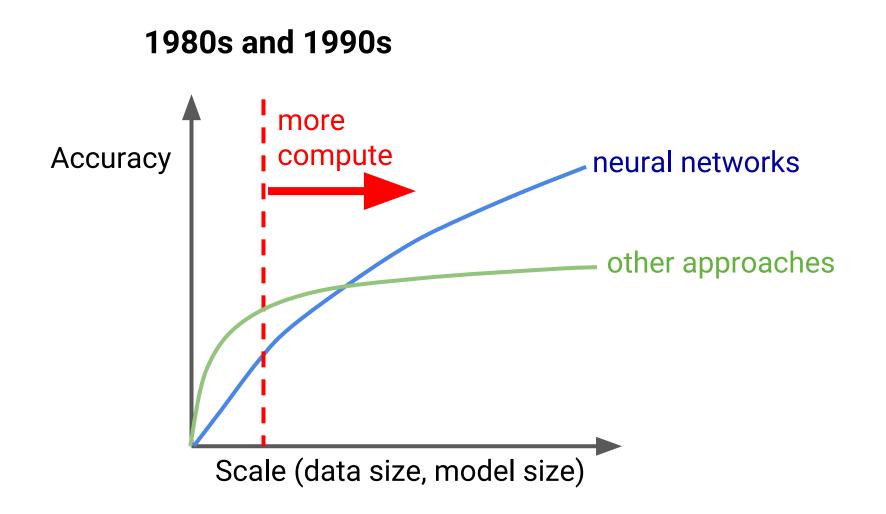
"How cold is it outside?"

"Bonjour, comment allez-vous?"

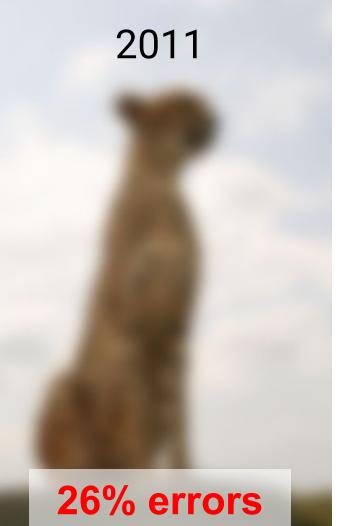
"A blue and yellow train travelling down the tracks"

But why now?

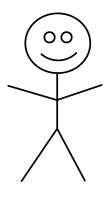




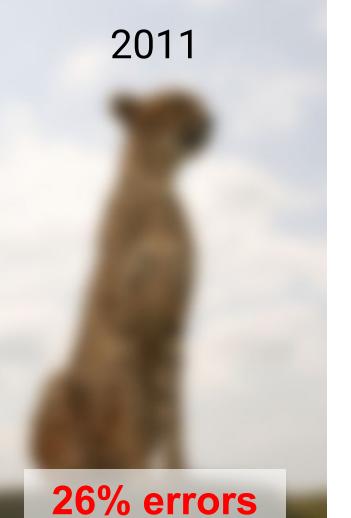
Now more compute Accuracy neural networks other approaches Scale (data size, model size)



humans



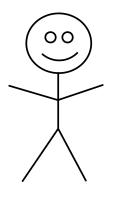
5% errors



2016

3% errors

humans



5% errors

2008: NAE Grand Engineering Challenges for 21st Century

- Make solar energy affordable
- Provide energy from fusion
- Develop carbon sequestration methods
- Manage the nitrogen cycle
- Provide access to clean water
- Restore & improve urban infrastructure
- Advance health informatics

- Engineer better medicines
- Reverse-engineer the brain
- Prevent nuclear terror
- Secure cyberspace
- Enhance virtual reality
- Advance personalized learning
- Engineer the tools for scientific discovery

www.engineeringchallenges.org/challenges.aspx

2008: NAE Grand Engineering Challenges for 21st Century

- Make solar energy affordable
- Provide energy from fusion
- Develop carbon sequestration methods
- Manage the nitrogen cycle
- Provide access to clean water
- Restore & improve urban infrastructure
- Advance health informatics

- Engineer better medicines
- Reverse-engineer the brain
- Prevent nuclear terror
- Secure cyberspace
- Enhance virtual reality
- Advance personalized learning
- Engineer the tools for scientific discovery

www.engineeringchallenges.org/challenges.aspx

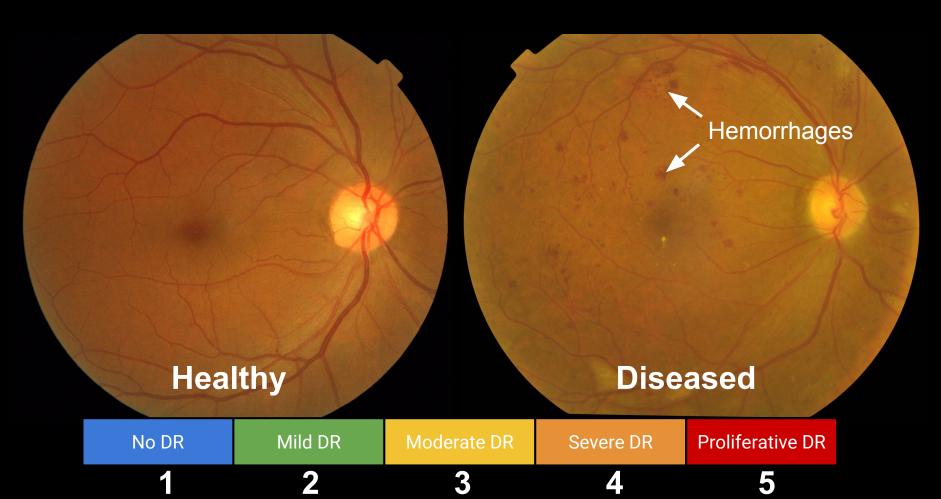
Restore & improve urban infrastructure

3 million miles self-driven

We drive more than 25,000 autonomous miles each week, largely on complex city streets. That's on top of 1 billion simulated miles we drove just in 2016.

https://waymo.com/tech/

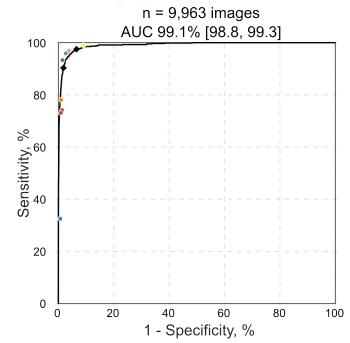
Advance health informatics

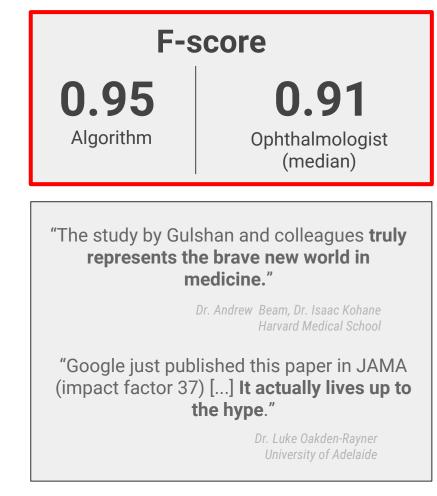


JAMA The Journal of the American Medical Association

JAMA | Original Investigation | INNOVATIONS IN HEALTH CARE DELIVERY

Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs





Detecting Cancer Metastases on Gigapixel Pathology Images

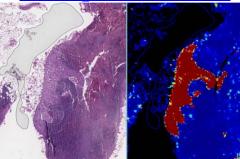
Yun Liu^{1*}, Krishna Gadepalli¹, Mohammad Norouzi¹, George E. Dahl¹, Timo Kohlberger¹, Aleksey Boyko¹, Subhashini Venugopalan^{2**}, Aleksei Timofeev², Philip Q. Nelson², Greg S. Corrado¹, Jason D. Hipp³, Lily Peng¹, and Martin C. Stumpe¹

{liuyun,mnorouzi,gdahl,lhpeng,mstumpe}@google.com

¹Google Brain, ²Google Inc, ³Verily Life Sciences, Mountain View, CA, USA

Tumor localization score (FROC):model:**0.89**pathologist:0.73

arxiv.org/abs/1703.02442



Radiology

Acta Orthopaedica

Research-article

Artificial intelligence for analyzing orthopedic trauma radiographs

Deep learning algorithms—are they on par with humans for diagnosing fractures?

Jakub Olczak, Niklas Fahlberg, Atsuto Maki, Ali Sharif Razavian, Anthony Jilert, André Stark, Olof Sköldenberg & Max Gordon 💐show less Pages 1-6 | Received 01 Mar 2017, Accepted 06 Jun 2017, Published online: 06 Jul 2017

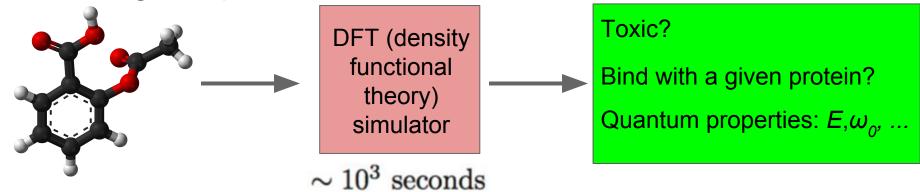
"The network performed similarly to senior orthopedic surgeons when presented with images at the same resolution as the network."

www.tandfonline.com/doi/full/10.1080/17453674.2017.1344459

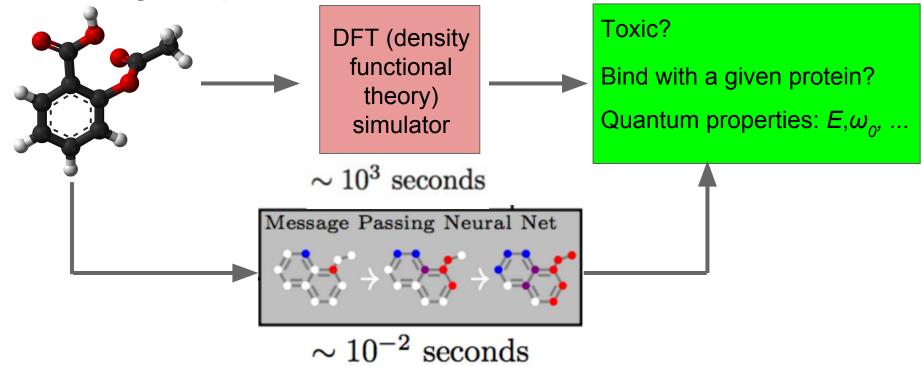
Engineer better medicines

and maybe... Make solar energy affordable Develop carbon sequestration methods Manage the nitrogen cycle

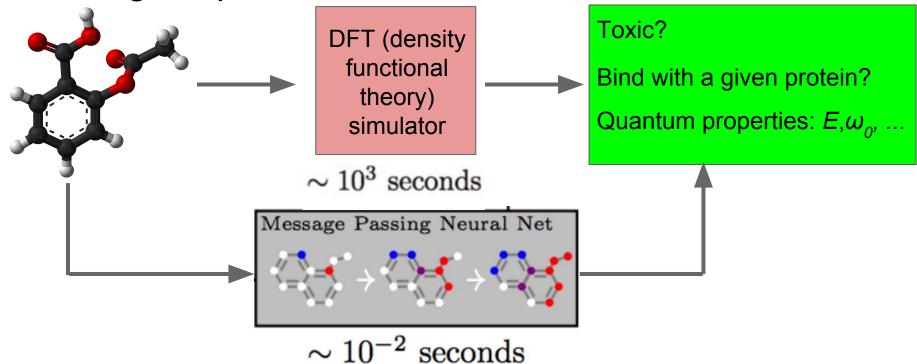
Predicting Properties of Molecules



Predicting Properties of Molecules



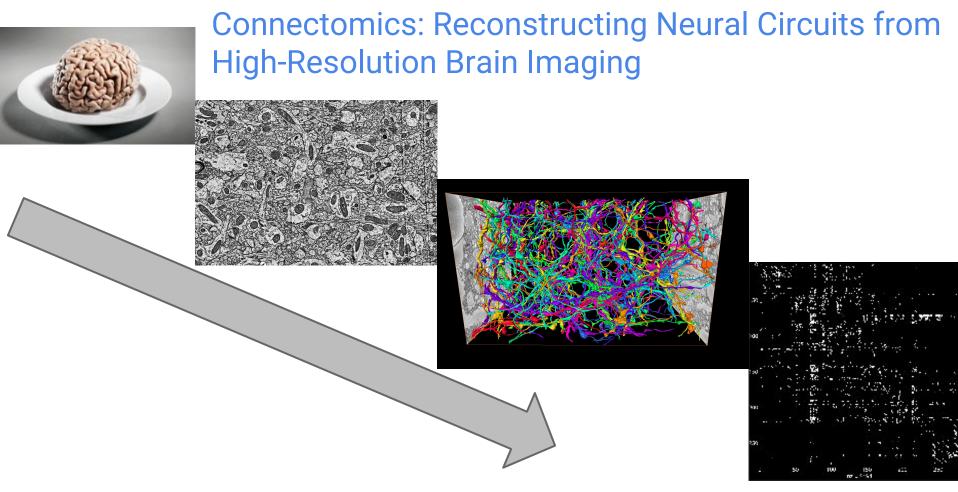
Predicting Properties of Molecules



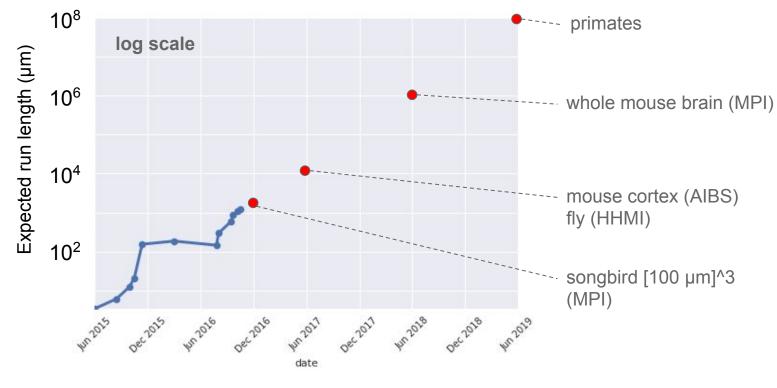
• State of the art results predicting output of expensive quantum chemistry calculations, but ~300,000 times faster

https://research.googleblog.com/2017/04/predicting-properties-of-molecules-with.html and https://arxiv.org/abs/1702.05532 and https://arxiv.org/abs/1704.01212 (appeared in ICML 2017)

Reverse engineer the brain



Automated Reconstruction Progress at Google



Metric: Expected Run Length (ERL) "mean microns between failure" of automated neuron tracing

New Technology: Flood Filling Networks

Flood-Filling Networks

Michał Januszewski Google mjanusz@google.com

Google

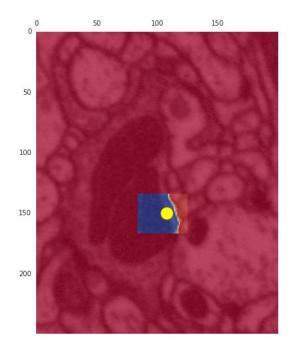
Jeremy Maitin-Shepard Google jbms@google.com Peter Li Google phli@google.com

Jörgen Kornfeld Max Planck Institute for Neurobiology kornfeld@neuro.mpg.de Winfried Denk Max Planck Institute for Neurobiology winfried.denk@neuro.mpg.de

Viren Jain Google viren@google.com

- Start with a seed point
- Recurrent neural network iteratively fills out an object based on image content and its own previous predictions

2d Inference



https://arxiv.org/abs/1611.00421

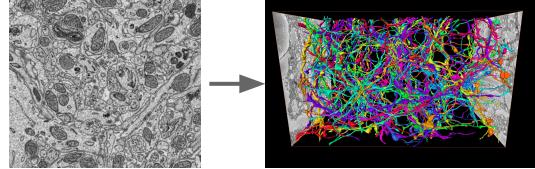
Flood Filling Networks: 3d Inference

Q

Flood Filling Networks: 3d Inference

Songbird Brain Wiring Diagram

- Raw data produced by Max Planck Institute for Neurobiology using serial block face scanning electron microscopy
- 10,600 × 10,800 × 5,700 voxels = ~600 billion voxels
- Goal: Reconstruct complete
 connectivity and use to test specific
 hypotheses related to how biological
 nervous systems produce precise,
 sequential motor behaviors and perform
 reinforcement learning.



Courtesy Jorgen Kornfeld & Winfried Denk, MPI

Engineer the tools for scientific discovery

http://tensorflow.org/

and

https://github.com/tensorflow/tensorflow

Open, standard software for general machine learning

Great for Deep Learning in particular

First released Nov 2015

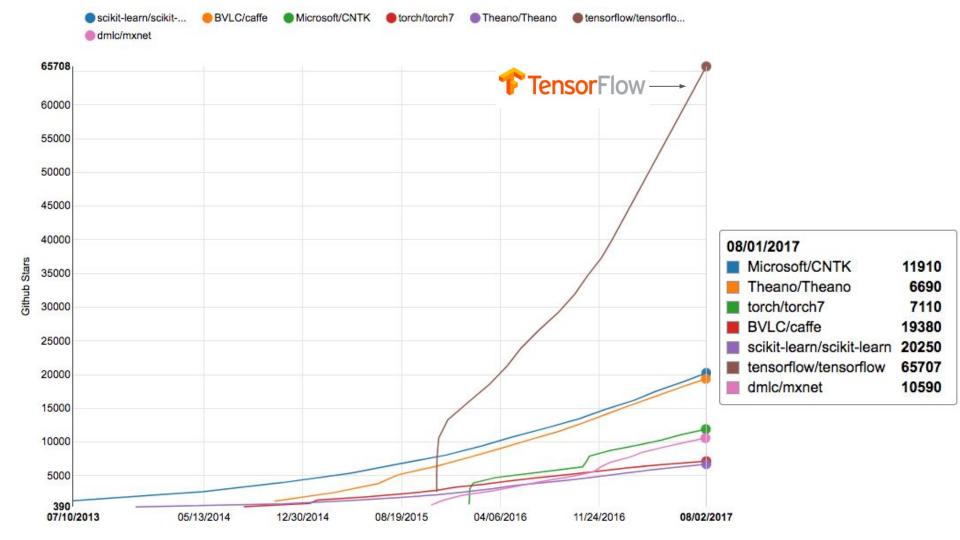
Apache 2.0 license

TensorFlow Goals

Establish **common platform** for expressing machine learning ideas and systems

Open source it so that it becomes a **platform for everyone**, not just Google

Make this platform the **best in the world** for both research and production use



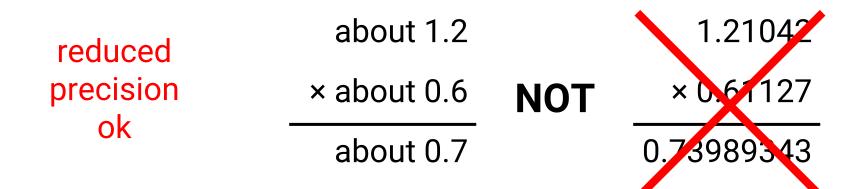
TensorFlow: A Vibrant Open-Source Community

- Rapid development, many outside contributors
 - ~800+ non-Google contributors to TensorFlow
 - 21,000+ commits in 21 months
 - Many community created tutorials, models, translations, and projects
 - ~16,000 GitHub repositories with 'TensorFlow' in the title
- Direct engagement between community and TensorFlow team
 - 5000+ Stack Overflow questions answered
 - 80+ community-submitted GitHub issues responded to weekly
- Growing use in ML classes: Toronto, Berkeley, Stanford, ...

More computational power needed

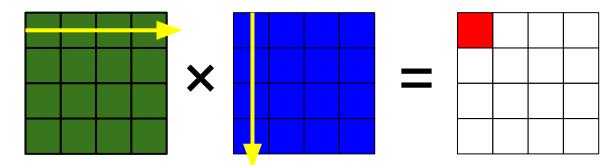
Deep learning is transforming how we design computers

Special computation properties



Special computation properties





Tensor Processing Unit v1

Google-designed chip for neural net inference

In production use for >30 months: used on search queries, for neural machine translation, for AlphaGo match, ...

In-Datacenter Performance Analysis of a Tensor Processing Unit, Jouppi, Young, Patil, Patterson et al., ISCA 2017, <u>arxiv.org/abs/1704.04760</u>

Tensor Processing Unit v1

In pro querie

for AlphaGo match, ...

In-Datacenter Performance Analysis of a Tensor Processing Unit, Jouppi, Young, Patil, Patterson et al., ISCA 2017, <u>arxiv.org/abs/1704.04760</u>

TPUv1 is a huge help for inference

But what about training?

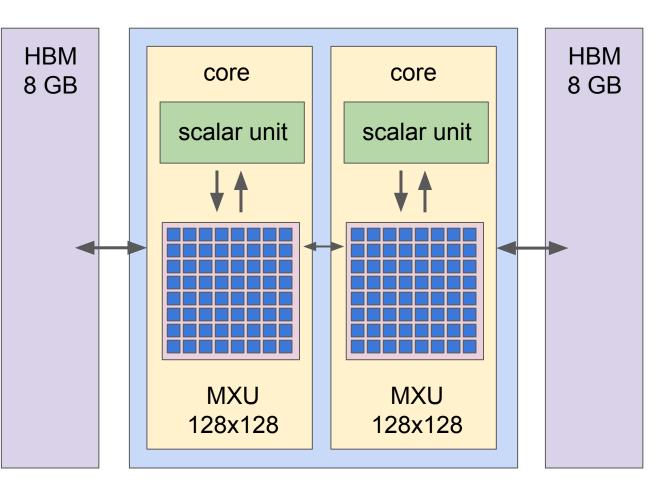
Speeding up training hugely important: for researcher productivity, and for increasing scale of problems that can be tackled

Tensor Processing Unit v2

Google-designed device for neural net training and inference

TPUv2 Chip

- 16 GB of HBM
- 600 GB/s mem BW
- Scalar unit: 32b float
- MXU: 32b float accumulation but reduced precision for multipliers
- 45 TFLOPS



Tensor Processing Unit v2

- 180 teraflops of computation, 64 GB of HBM memory, 2400 GB/s mem BW
- Designed to be connected together into larger configurations

TPU Pod 64 2nd-gen TPUs 11.5 petaflops 4 terabytes of HBM memory

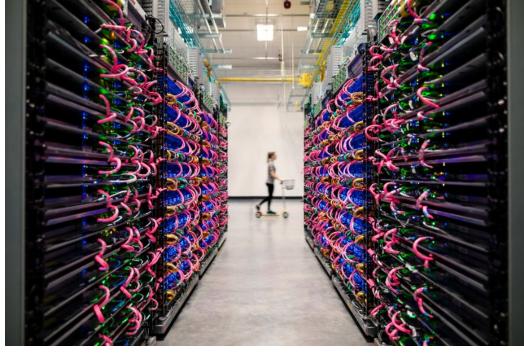
Programmed via TensorFlow

Same program will run with only minor modifications on CPUs, GPUs, & TPUs

Will be Available through Google Cloud

Cloud TPU - virtual machine w/180 TFLOPS TPUv2 device attached

TensorFlow Research cloud

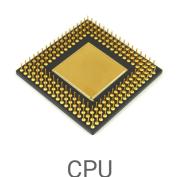


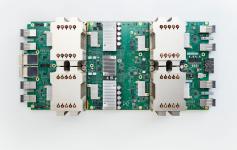
Making 1000 Cloud TPUs available for free to top researchers who are committed to open machine learning research

We're excited to see what researchers will do with much more computation! <u>g.co/tpusignup</u>

Machine learning needs to run in a growing set of environments

TensorFlow supports many platforms





iOS

Android

Raspberry Pi

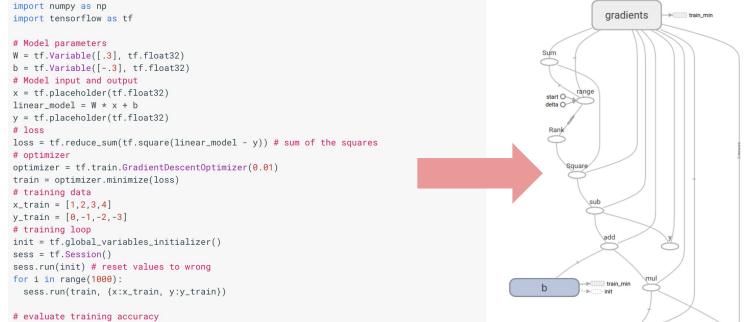
1st-gen TPU

Cloud TPU

TensorFlow supports many languages Java **C++** Haskell Python[™] julia Go

TensorFlow Graph

Python Program



curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x:x_train, y:y_train})
print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))

https://www.tensorflow.org/get_started/get_started

TensorFlow Graph

train_min

W init

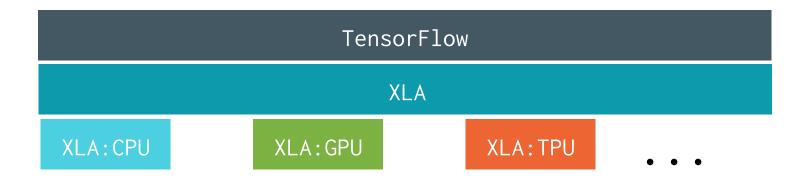
gradients

->:::::: train_min

init

W

TensorFlow + XLA Compiler



See: <u>https://www.tensorflow.org/performance/xla/</u>

Open-sourced code in

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler

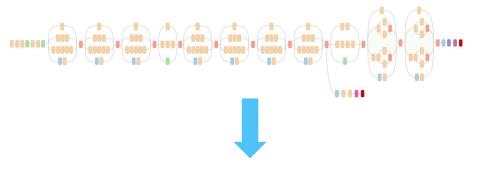
Google

TensorFlow Strengths

How do we keep the strengths but add more performance?

Google

JIT Compilation via XLA



XLA program: static, decomposed TF ops

- Static data types
- Math-looking primitive ops

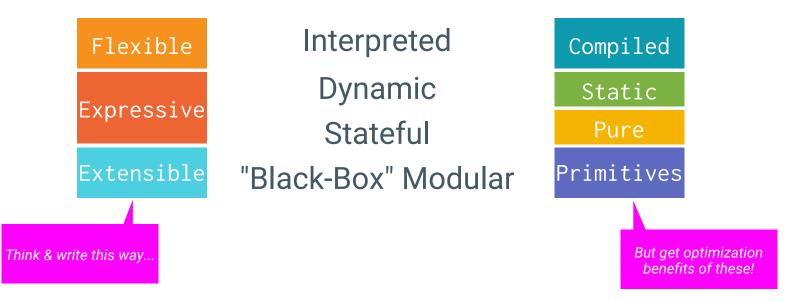
0x00000000 0x00000003 0x00000007 0x00000000 movq (%rdx), %rax vmovaps (%rax), %xmm0 vmulps %xmm0, %xmm0, %xmm0 vmovaps %xmm0, (%rdi)

. . .

Google

The Best of Both Worlds

TensorFlow Strengths

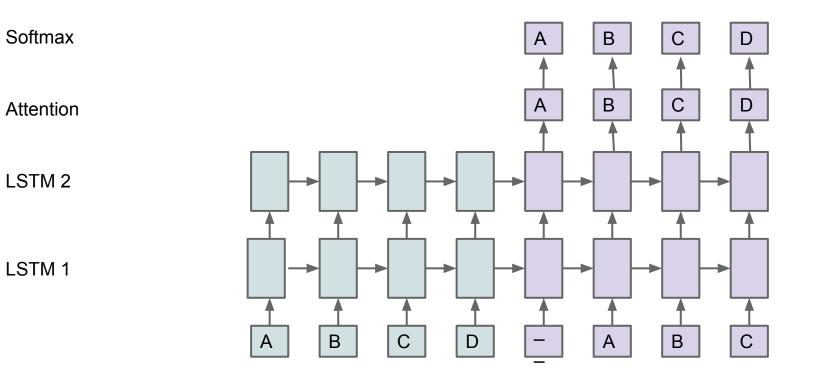


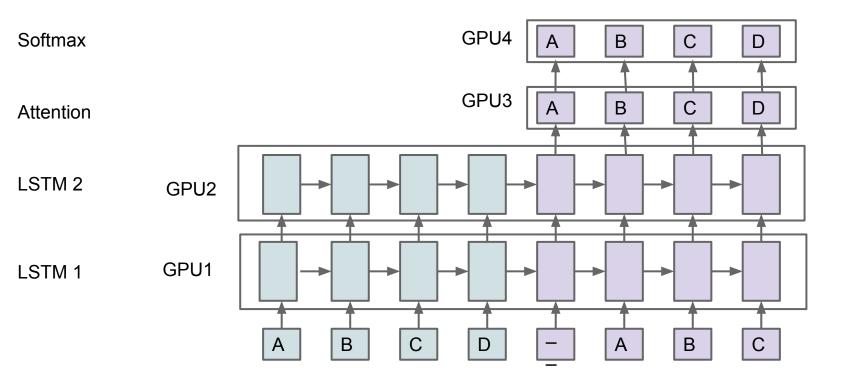
Machine Learning for Higher Performance Machine Learning Models

For large models, model parallelism is important

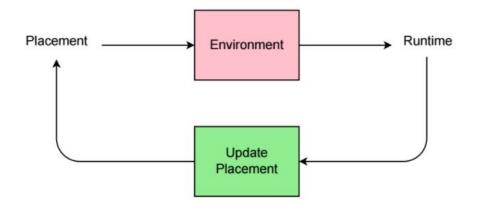
For large models, model parallelism is important

But getting good performance given multiple computing devices is non-trivial and non-obvious



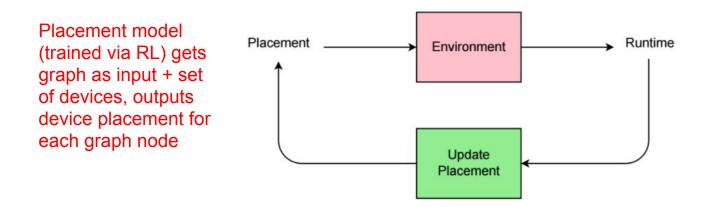


Reinforcement Learning for Higher Performance Machine Learning Models



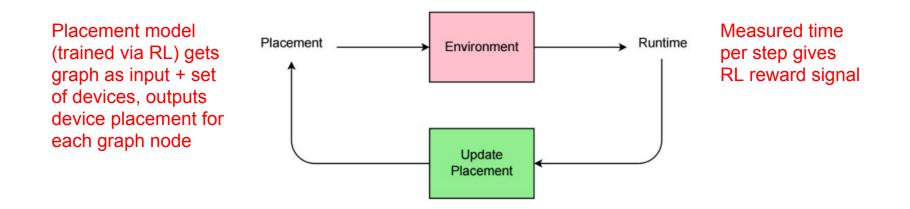
Device Placement Optimization with Reinforcement Learning,

Reinforcement Learning for Higher Performance Machine Learning Models



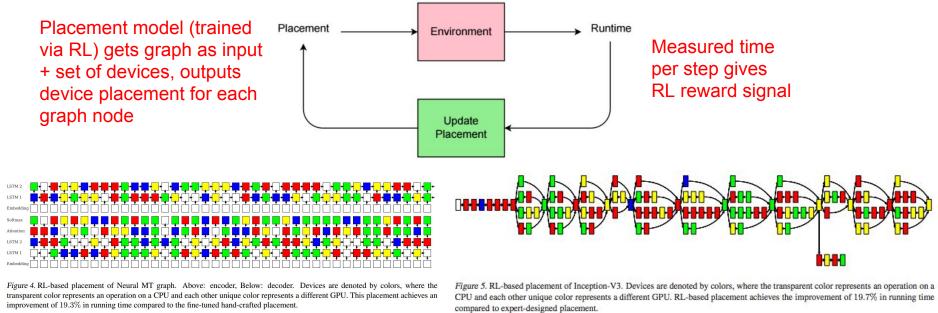
Device Placement Optimization with Reinforcement Learning,

Reinforcement Learning for Higher Performance Machine Learning Models



Device Placement Optimization with Reinforcement Learning,

Device Placement with Reinforcement Learning



+19.3% faster vs. expert human for neural translation model

+19.7% faster vs. expert human for InceptionV3 image model

Device Placement Optimization with Reinforcement Learning,

Reducing inference cost

Reducing inference cost

• **Bad feeling:** "I have an awesomely good model that requires too much (computation, power, memory) to deploy! Oh no!"

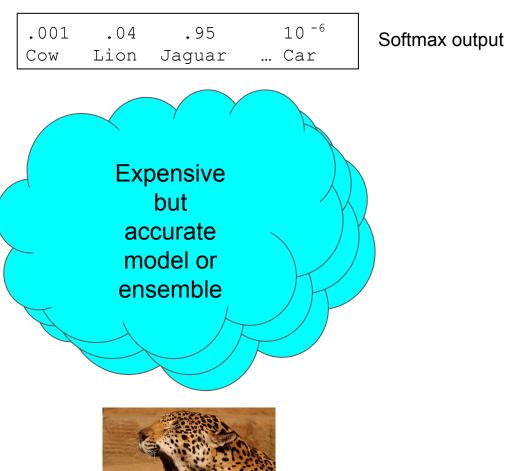
Fear not, there are lots of tricks:

- **Quantize**! Most models tolerate very low precision for weights (8 bits or even less).
 - 4X memory reduction, 4X computation efficiency

Distillation

- Suppose you have a giant, highly accurate model
 Or maybe an ensemble of many such models)
- Now you want a smaller, cheaper model with almost the same accuracy (maybe to run on a phone)

Distilling the Knowledge in a Neural Network, Hinton, Vinyals, and Dean. NIPS Deep Learning Workshop, 2014. <u>http://arxiv.org/abs/1503.02531</u>

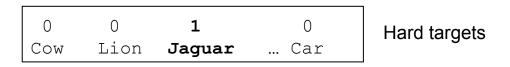


The Main Idea

The ensemble implements a function from input to output. Forget the models in the ensemble and the way they are parameterized and focus on the function.

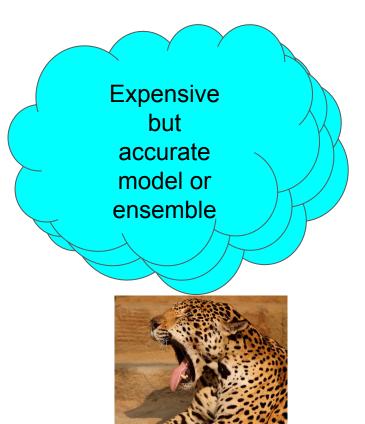
- After learning the ensemble, we have our hands on the function.
- Can we transfer the knowledge in the function into a single smaller model?

Training



.001	.04	.95	10 -6
Cow	Lion	Jaguar	… Car

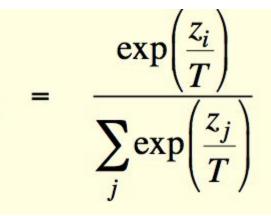
Softmax output



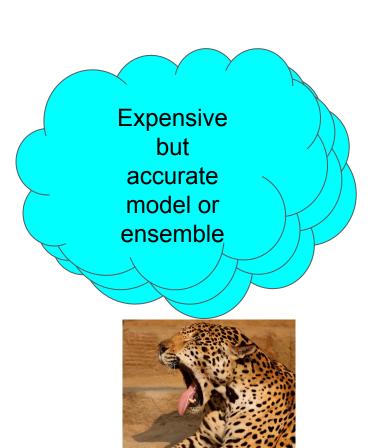
.001	.04	.95	10 -6
Cow	Lion	Jaguar	… Car

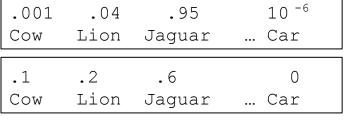
Softmax output

If we have the ensemble, we can divide the averaged logits from the ensemble by a "temperature" *T* to get a much softer distribution.



 P_i

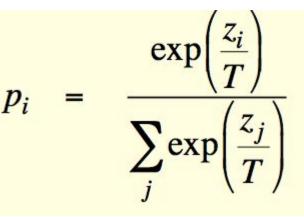




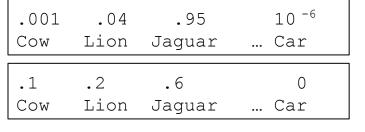
Softmax output

Softened softmax output

If we have the ensemble, we can divide the averaged logits from the ensemble by a "temperature" *T* to get a much softer distribution.







Expensive

but

accurate

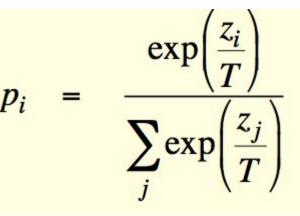
model or

ensemble

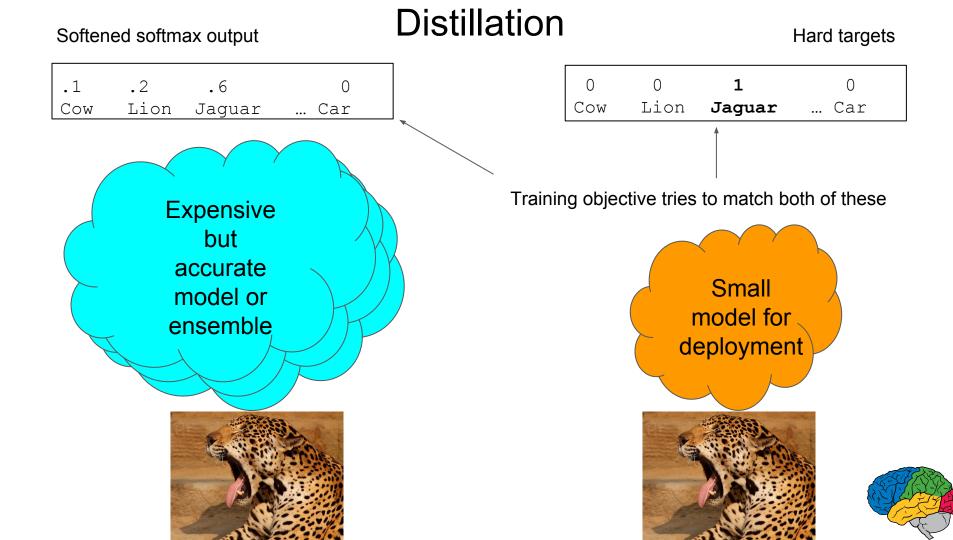
Softmax output

Softened softmax output

If we have the ensemble, we can divide the averaged logits from the ensemble by a "temperature" *T* to get a much softer distribution.



This full distribution conveys lots of information about the function implemented by the large ensemble!



Some Results on Speech

Start with a model that classifies 58.9% of frames correctly.

Use that model to provide soft targets for smaller model (that also sees hard targets)

- The new model gets 57.0% correct even when trained on only 3% of the data
- With just hard targets, it only gets to 44.5% correct and then gets much worse.

Soft targets are a VERY good regularizer! Also trains much faster (soft targets enrich gradients)

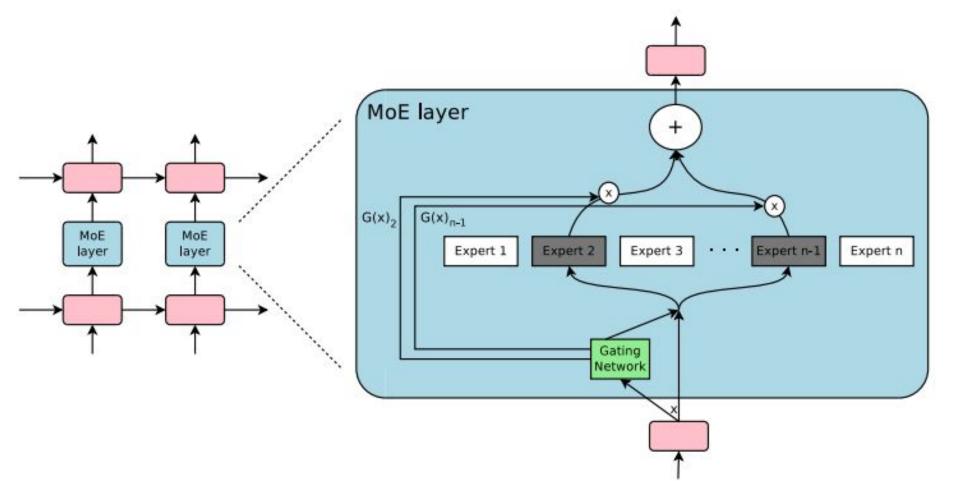
A few trends in the kinds of models we want to train

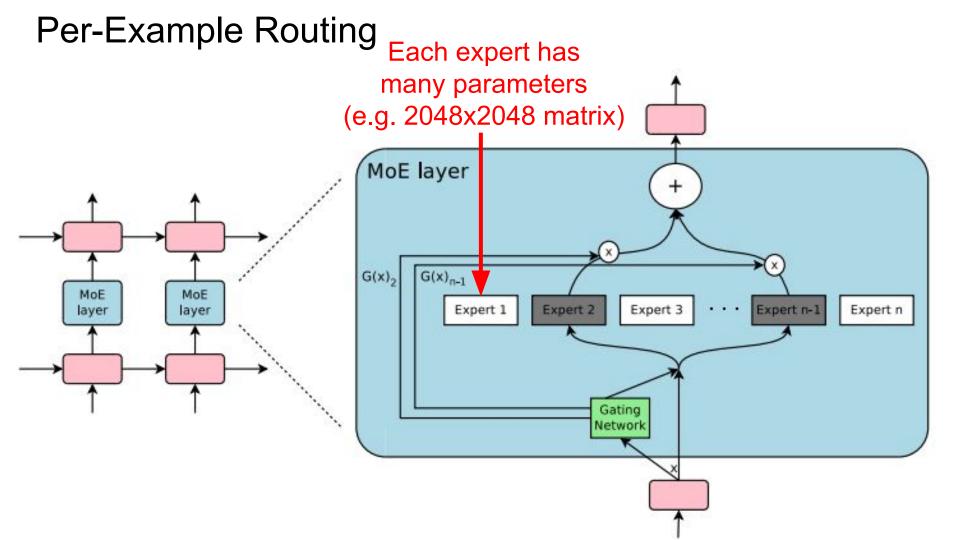
Bigger models, but sparsely activated

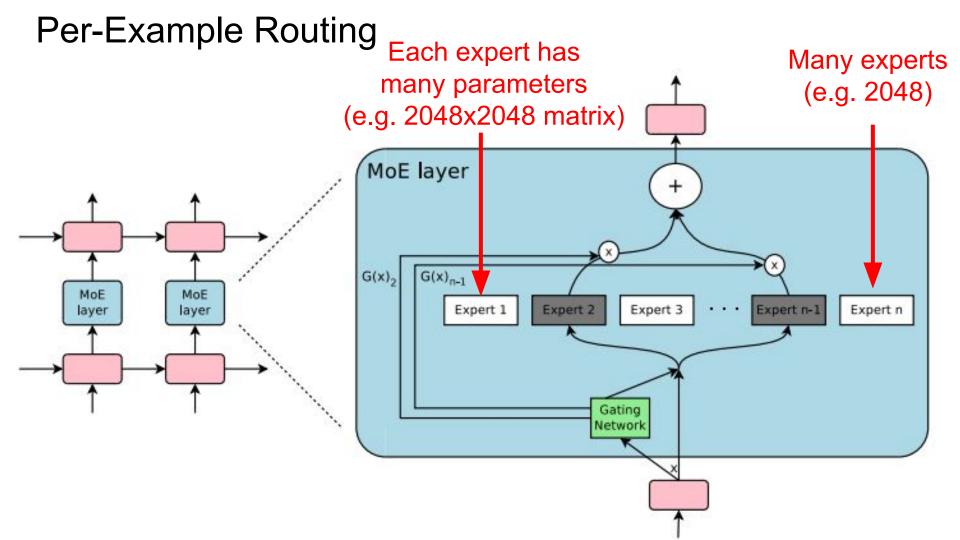
Bigger models, but sparsely activated

Motivation: Want huge model capacity for large datasets, but want individual example to only activate tiny fraction of large model

Per-Example Routing







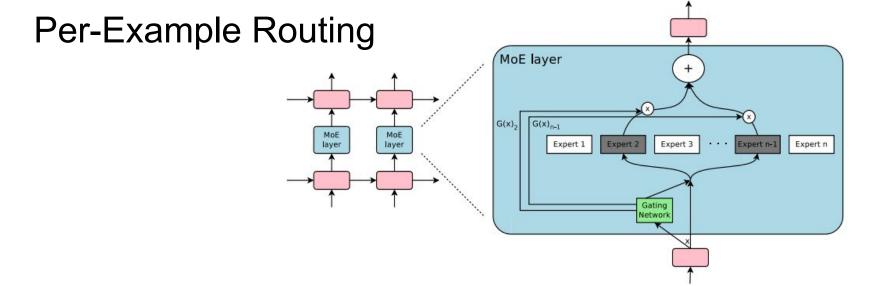


Table 7: Perplexity and BLEU comparison of our method against previous state-of-art methods on the Google Production $En \rightarrow Fr$ dataset.

 ooogie i roudetton i								
Model	Eval	Eval	Test	Test	Computation	Total	Training	
	Perplexity	BLEU	Perplexity	BLEU	per Word	#Parameters	Time	
MoE with 2048 Experts	2.60	37.27	2.69	36.57	100.8M	8.690B	1 day/64 k40s	
GNMT (Wu et al., 2016)	2.78	35.80	2.87	35.56	214.2M	246.9M	6 days/96 k80s	

Outrageously Large Neural Networks: The Sparsely-gated Mixture-of-Experts Layer, Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le & Jeff Dean Appeared in ICLR 2017, <u>https://openreview.net/pdf?id=B1ckMDqlg</u> Automated machine learning ("learning to learn")

Current: Solution = ML expertise + data + computation

Current: Solution = ML expertise + data + computation

Can we turn this into: Solution = data + 100X computation

???

Early encouraging signs

(1) Reinforcement learning-based architecture search(2) Learn how to optimize

NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING

Barret Zoph; Quoc V. Le Google Brain {barretzoph, qvl}@google.com Appeared in ICLR 2017

Idea: model-generating model trained via RL

- (1) Generate ten models
- (2) Train them for a few hours
- (3) Use loss of the generated models as reinforcement learning signal

arxiv.org/abs/1611.01578

CIFAR-10 Image Recognition Task

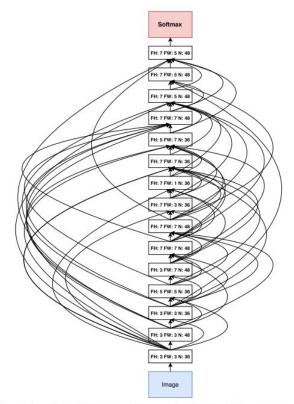


Figure 7: Convolutional architecture discovered by our method, when the search space does not have strides or pooling layers. FH is filter height, FW is filter width and N is number of filters.

Model	Depth	Parameters	Error rate (%)
Network in Network (Lin et al., 2013)	-	-	8.81
All-CNN (Springenberg et al., 2014)			7.25
Deeply Supervised Net (Lee et al., 2015)	3 - 0	-	7.97
Highway Network (Srivastava et al., 2015)	2.42	3 - 3	7.72
Scalable Bayesian Optimization (Snoek et al., 2015)	1022		6.37
FractalNet (Larsson et al., 2016)	21	38.6M	5.22
with Dropout/Drop-path	21	38.6M	4.60
ResNet (He et al., 2016a)	110	1.7M	6.61
ResNet (reported by Huang et al. (2016b))	110	1.7M	6.41
ResNet with Stochastic Depth (Huang et al., 2016b)	110	1.7M	5.23
Edite of the full sector and the fifth fifth the same state in	1202	10.2M	4.91
Wide ResNet (Zagoruyko & Komodakis, 2016)	16	11.0M	4.81
	28	36.5M	4.17
ResNet (pre-activation) (He et al., 2016b)	164	1.7M	5.46
ta na menanana na menang 🖶 ang kana kakana kana dan kapana dari kata kana kana menang kana kana kana kana kana kana kana	1001	10.2M	4.62
DenseNet $(L = 40, k = 12)$ Huang et al. (2016a)	40	1.0M	5.24
DenseNet $(L = 100, k = 12)$ Huang et al. (2016a)	100	7.0M	4.10
DenseNet $(L = 100, k = 24)$ Huang et al. (2016a)	100	27.2M	3.74
Neural Architecture Search v1 no stride or pooling	15	4.2M	5.50
Neural Architecture Search v2 predicting strides	20	2.5M	6.01
Neural Architecture Search v3 max pooling	39	7.1M	4.47
Neural Architecture Search v3 max pooling + more filters	39	32.0M	3.84

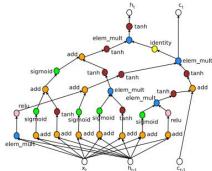
Table 1: Performance of Neural Architecture Search and other state-of-the-art models on CIFAR-10.

Penn Tree Bank Language Modeling Task

"Normal" LSTM cell

identity elem_mult identity add elem_mult tanh sigmoid elem_mult sigmoid elem_mult

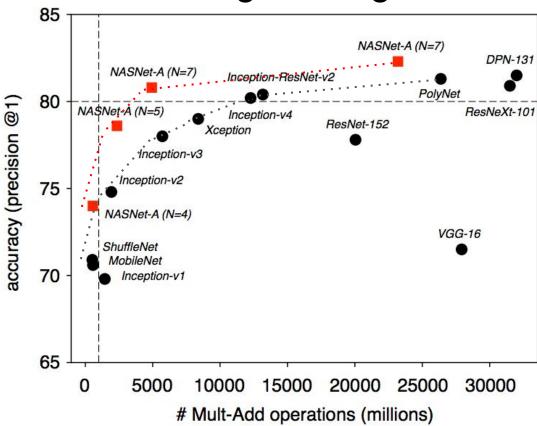
Cell discovered by architecture search



Model	Parameters	Test Perplexity
Mikolov & Zweig (2012) - KN-5	2M [‡]	141.2
Mikolov & Zweig (2012) - KN5 + cache	$2M^{\ddagger}$	125.7
Mikolov & Zweig (2012) - RNN	6M [‡]	124.7
Mikolov & Zweig (2012) - RNN-LDA	7M [‡]	113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache	9M [‡]	92.0
Pascanu et al. (2013) - Deep RNN	6M	107.5
Cheng et al. (2014) - Sum-Prod Net	5M [‡]	100.0
Zaremba et al. (2014) - LSTM (medium)	20M	82.7
Zaremba et al. (2014) - LSTM (large)	66M	78.4
Gal (2015) - Variational LSTM (medium, untied)	20M	79.7
Gal (2015) - Variational LSTM (medium, untied, MC)	20M	78.6
Gal (2015) - Variational LSTM (large, untied)	66M	75.2
Gal (2015) - Variational LSTM (large, untied, MC)	66M	73.4
Kim et al. (2015) - CharCNN	19M	78.9
Press & Wolf (2016) - Variational LSTM, shared embeddings	24M	73.2
Merity et al. (2016) - Zoneout + Variational LSTM (medium)	20M	80.6
Merity et al. (2016) - Pointer Sentinel-LSTM (medium)	21M	70.9
Zilly et al. (2016) - Variational RHN, shared embeddings	24M	66.0
Neural Architecture Search with base 8	32M	67.9
Neural Architecture Search with base 8 and shared embeddings	25M	64.0
Neural Architecture Search with base 8 and shared embeddings	54M	62.4

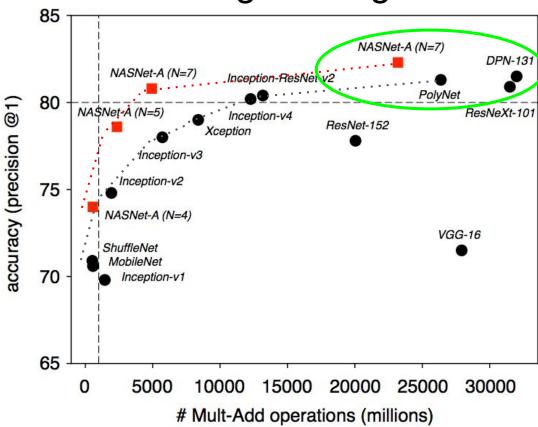
Table 2: Single model perplexity on the test set of the Penn Treebank language modeling task. Parameter numbers with [‡] are estimates with reference to Merity et al. (2016).

Scaling to Imagenet



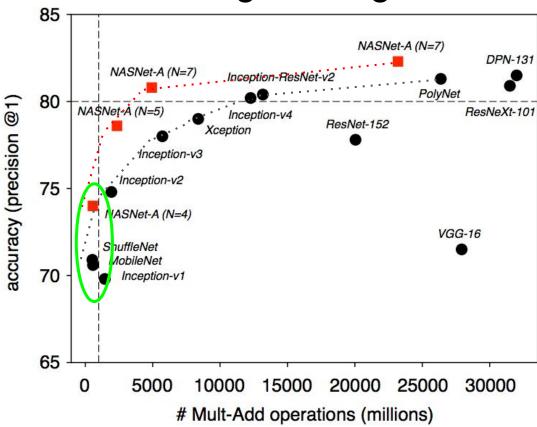
Learning Transferable Architectures for Scalable Image Recognition, Barret Zoph, Vijay Vasudevan, Jonathon Shlens and Quoc Le, <u>https://arxiv.org/abs/1707.07012</u>

Scaling to Imagenet



Learning Transferable Architectures for Scalable Image Recognition, Barret Zoph, Vijay Vasudevan, Jonathon Shlens and Quoc Le, <u>https://arxiv.org/abs/1707.07012</u>

Scaling to Imagenet



Learning Transferable Architectures for Scalable Image Recognition, Barret Zoph, Vijay Vasudevan, Jonathon Shlens and Quoc Le, <u>https://arxiv.org/abs/1707.07012</u>

Learn the Optimization Update Rule

Commonly Used Human-Designed Optimizers

parameters += learning_rate * expressionSGD:gMomentum: $g + \gamma \hat{m}$ ADAM: $\hat{m}/\sqrt{\hat{v}}$ RMSProp: $g/\sqrt{\hat{v}}$

Where:

- g gradient
- \hat{m} bias-corrected running average of the gradient
- \hat{v} bias-corrected running average of the squared gradient

Learn the Optimization Update Rule

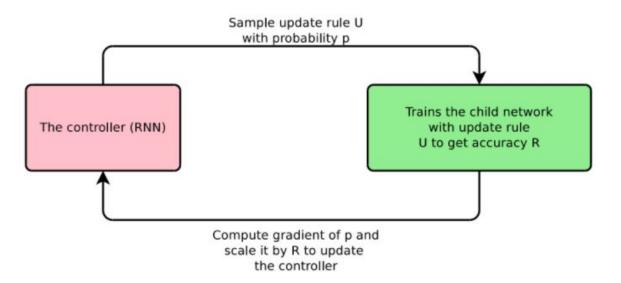


Figure 1. Overview of Neural Optimizer Search.

Neural Optimizer Search using Reinforcement Learning, Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc Le, ICML 2017, <u>proceedings.mlr.press/v70/bello17a/bello17a.pdf</u>

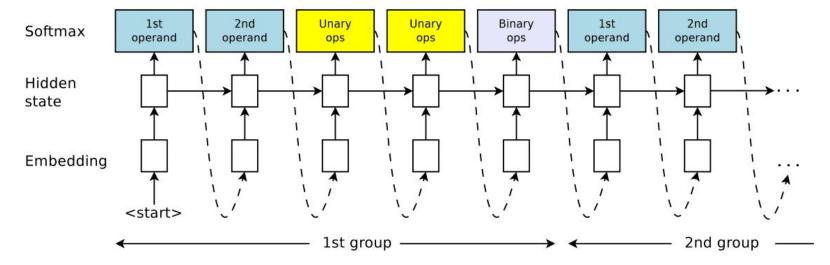


Figure 3. Overview of the controller RNN. The controller iteratively selects subsequences of length 5. It first selects the 1st and 2nd operands op_1 and op_2 , then 2 unary functions u_1 and u_2 to apply to the operands and finally a binary function b that combines the outputs of the unary functions. The resulting $b(u_1(op_1), u_2(op_2))$ then becomes an operand that can be selected in the subsequent group of predictions or becomes the update rule. Every prediction is carried out by a softmax classifier and then fed into the next time step as input.

The operands, unary functions and binary functions that are accessible to our controller are as follows:

- Operands: g, g², g³, m̂, v̂, γ̂, sign(g), sign(m̂), sign(g) * sign(m), 1, small constant noise, 10⁻⁴w, 10⁻³w, 10⁻²w, 10⁻¹w, ADAM and RMSProp.
- Unary functions which map input x to: x, e^x , $\log |x|$, $clip(x, 10^{-5})$, $clip(x, 10^{-4})$, $clip(x, 10^{-3})$, drop(x, 0.1), drop(x, 0.3) or drop(x, 0.5).
- Binary functions which map (x, y) to x + y (addition), x - y (subtraction), x * y (multiplication), x/y+ε (division) or x (keep left).

Optimizer	Final Val	Final Test	Best Val	Best Test
SGD	92.0	91.8	92.9	91.9
Momentum	92.7	92.1	93.1	92.3
ADAM	90.4	90.1	91.8	90.7
RMSProp	90.7	90.3	91.4	90.3

Table 1. Performance of Neural Optimizer Search and standard optimizers on the Wide-ResNet architecture (Zagoruyko & Komodakis, 2016) on CIFAR-10. Final Val and Final Test refer to the final validation and test accuracy after for training for 300 epochs. Best Val corresponds to the best validation accuracy over the 300 epochs and Best Test is the test accuracy at the epoch where the validation accuracy was the highest.

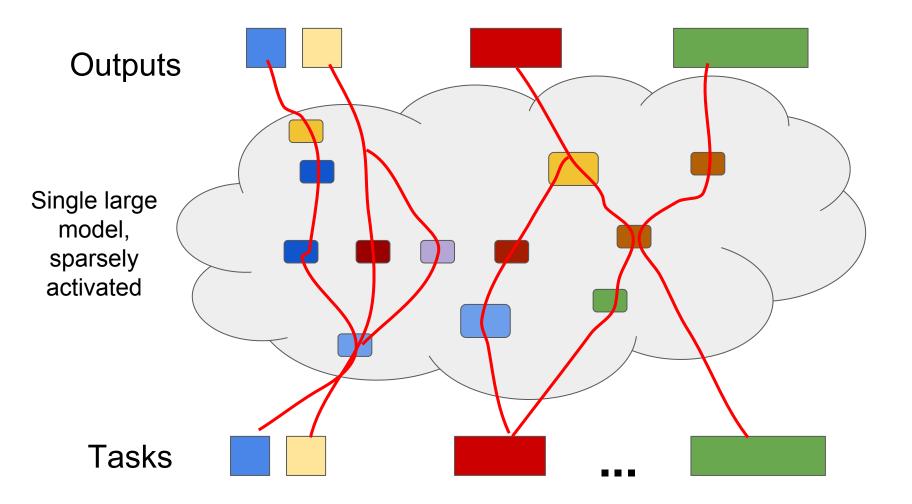
Optimizer	Final Val	Final Test	Best Val	Best Test
SGD	92.0	91.8	92.9	91.9
Momentum	92.7	92.1	93.1	92.3
ADAM	90.4	90.1	91.8	90.7
RMSProp	90.7	90.3	91.4	90.3
$[e^{\operatorname{sign}(g) * \operatorname{sign}(m)} + \operatorname{clip}(g, 10^{-4})] * g$	92.5	92.4	93.8	93.1
$clip(\hat{m}, 10^{-4}) * e^{\hat{v}}$	93.5	92.5	93.8	92.7
$\hat{m} * e^{\hat{v}}$	93.1	92.4	93.8	92.6
$g * e^{\operatorname{sign}(g) * \operatorname{sign}(m)}$	93.1	92.8	93.8	92.8
$drop(g, 0.3) * e^{sign(g) * sign(m)}$	92.7	92.2	93.6	92.7
$\hat{m} * e^{g^2}$	93.1	92.5	93.6	92.4
$\mathrm{drop}(\hat{m}, 0.1)/(e^{g^2} + \epsilon)$	92.6	92.4	93.5	93.0
$drop(g, 0.1) * e^{sign(g) * sign(m)}$	92.8	92.4	93.5	92.2
$\operatorname{clip}(\operatorname{RMSProp}, 10^{-5}) + \operatorname{drop}(\hat{m}, 0.3)$	90.8	90.8	91.4	90.9
$ADAM * e^{\operatorname{sign}(g) * \operatorname{sign}(m)}$	92.6	92.0	93.4	92.0
$ADAM * e^{\hat{m}}$	92.9	92.8	93.3	92.7
$g + \operatorname{drop}(\hat{m}, 0.3)$	93.4	92.9	93.7	92.9
$\operatorname{drop}(\hat{m}, 0.1) * e^{g^3}$	92.8	92.7	93.7	92.8
$g - \operatorname{clip}(g^2, 10^{-4})$	93.4	92.8	93.7	92.8
$e^g - e^{\hat{m}}$	93.2	92.5	93.5	93.1
$\operatorname{drop}(\hat{m}, 0.3) * e^w$	93.2	93.0	93.5	93.2

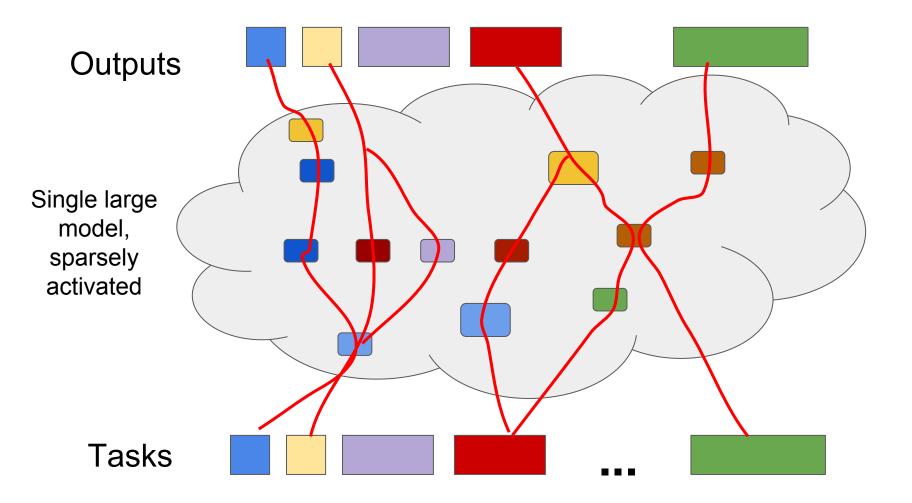
Table 1. Performance of Neural Optimizer Search and standard optimizers on the Wide-ResNet architecture (Zagoruyko & Komodakis, 2016) on CIFAR-10. Final Val and Final Test refer to the final validation and test accuracy after for training for 300 epochs. Best Val corresponds to the best validation accuracy over the 300 epochs and Best Test is the test accuracy at the epoch where the validation accuracy was the highest.

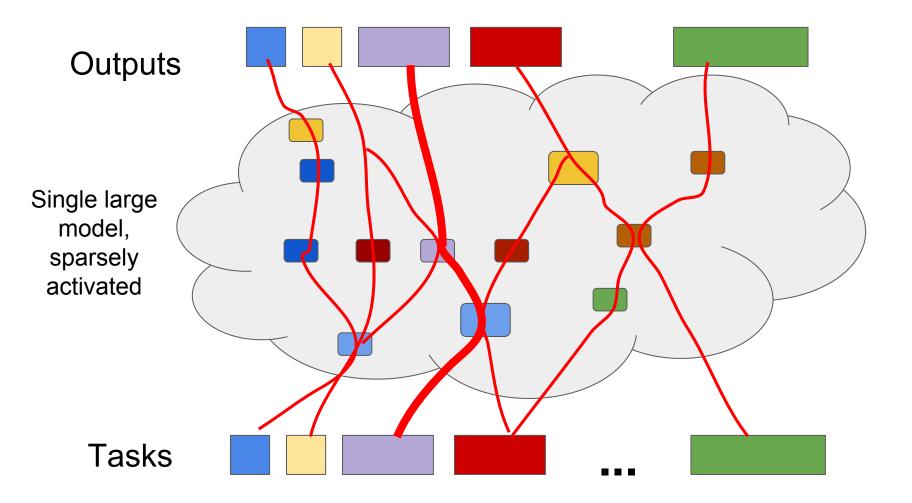
Optimizer	Train perplexity	Test BLEU	
Adam	1.49	24.5	
$g * e^{\operatorname{sign}(g) * \operatorname{sign}(m)}$	1.39	25.0	

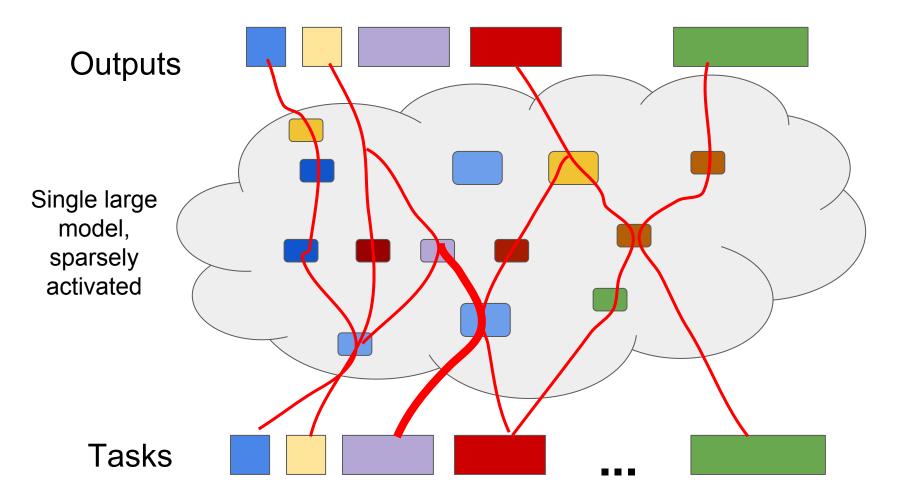
Table 2. Performance of our optimizer versus ADAM in a stateof-the-art GNMT model on WMT 2014 English \rightarrow German.

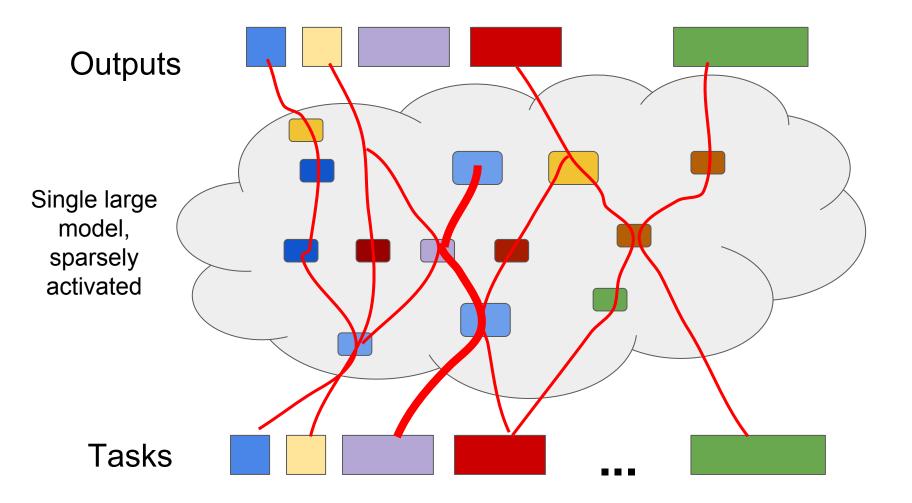
What might a plausible future look like? Combine many of these ideas: Large model, but sparsely activated Single model to solve many tasks (100s to 1Ms) Dynamically learn and grow pathways through large model Hardware specialized for ML supercomputing ML for efficient mapping onto this hardware

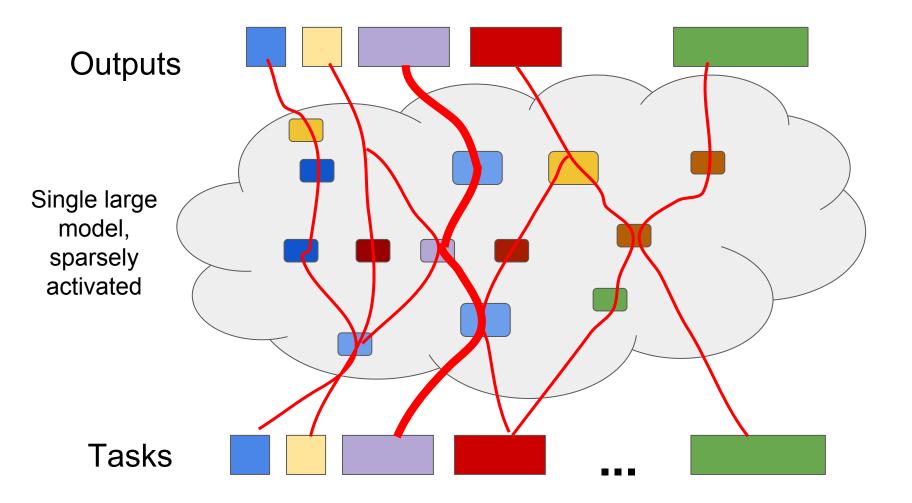












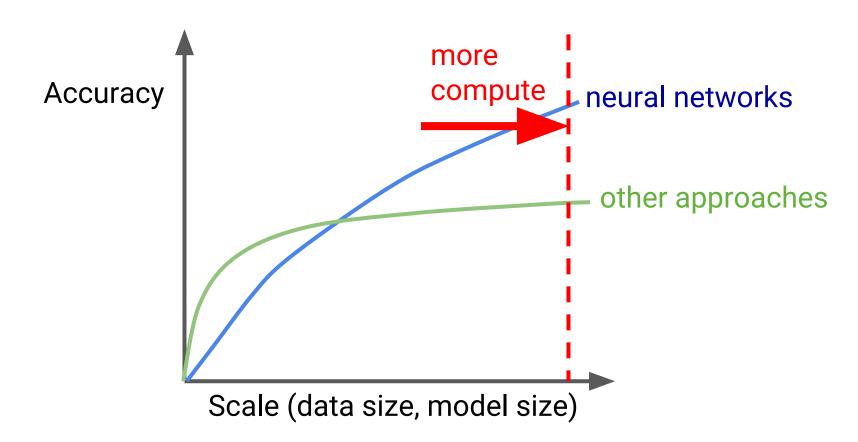
Questions/open-problems at the intersection of machine learning and systems/computer architecture

Questions/Open Issues

- Do dramatically different numerics make sense (e.g. 1- or 2-bit activations/parameters?)
- How can we deal efficiently with very dynamic models (different graph for every input example), especially on very large scale machines?
- What new approaches can help us with the **problem of** diminishing returns from larger batch sizes?
 - If we could train with batch_size = 1M, that would make things much easier
- What ML algorithms/approaches will be important in 3-4 years?

Now more compute Accuracy neural networks other approaches Scale (data size, model size)

Future



Conclusions

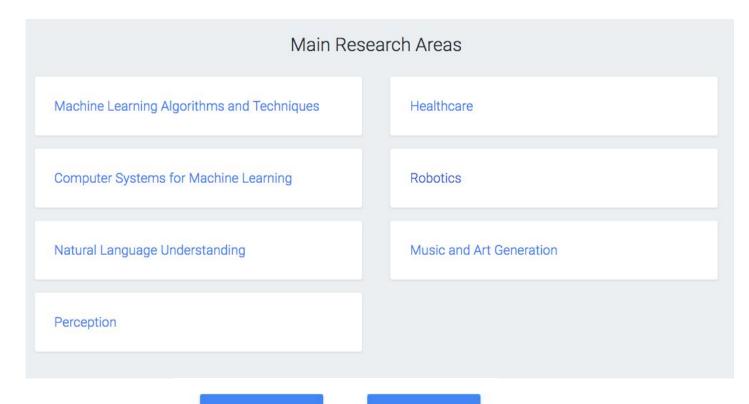
Deep neural networks are making significant strides in speech, vision, language, search, robotics, healthcare, ...

They are also **dramatically reshaping our computational devices**

If you're not considering how to use deep neural nets to solve your problems, **you almost certainly should be**

g.co/brain

More info about our work



MORE PAPERS

BLOG POSTS