ce

Recent Advances in Artificial Intelligence and the
Implications for Computer System Design

Jeff Dean
Google Brain team
g.co/brain

Presenting the work of many people at Google


http://g.co/brain

Deep learning is causing
a machine learning revolution

® deep learnin .
P 9 Interest over time
Search term




Deep Learning

Modern Reincarnation of Artificial Neural Networks

Collection of simple trainable mathematical units, organized in layers, that work together to solve
complicated tasks

What's New Key Benefit

new network architectures, Learns features from raw, heterogeneous, noisy data
new training math, *scale* No explicit feature engineering required
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Functions a Deep Neural Network Can Learn
input output

Pixels: “lion”




Functions a Deep Neural Network Can Learn
input

output
Pixels:

“lion”
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“How cold is i1t outside?”



Functions a Deep Neural Network Can Learn
input

output
Pixels: “lion”
Audio: )
“Hello,

“How cold i1s it outside?”
how are you?”

“Bonjour,

comment allez-vous?”



Functions a Deep Neural Network Can Learn
input

Pixels:

Audio:;

PRENEE by S -

“"Hello, how are you?”

Pixels:

output

“lion”

“How cold is i1t outside?”

“Bonjour, comment allez-vous?”

“A blue and yellow train
travelling down the tracks”



But why now?
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2008: NAE Grand Engineering Challenges for 21st Century

e Make solar energy affordable

e Provide energy from fusion

e Develop carbon sequestration methods
e Manage the nitrogen cycle

e Provide access to clean water

e Restore & improve urban infrastructure

e Advance health informatics

www.engineeringchallenges.org/challenges.aspx

Engineer better medicines
Reverse-engineer the brain
Prevent nuclear terror

Secure cyberspace

Enhance virtual reality
Advance personalized learning

Engineer the tools for scientific
discovery

P
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Restore & improve urban infrastructure



3 million miles

self-driven

We drive more than 25,000 autonomous
miles each week, largely on complex city
streets. That’s on top of 1 billion

simulated miles we drove just in 2016.

https://waymo.com/tech/


https://waymo.com/tech/

Advance health informatics






J AMA The Joumal of the
American Medical Association F-score

JAMA | Original Investigation | INNOVATIONS IN HEALTH CARE DELIVERY 0 9 5 0 9 1
Development and Validation of a Deep Learning Algorithm o °
for Detection of Diabetic Retinopathy

_ _ Algorithm Ophthalmologist
in Retinal Fundus Photographs (median)
n = 9,963 images
AUC 99.1% [98.8, 99.3]
100 -
f/ “The study by Gulshan and colleagues truly
80 represents the brave new world in
; medicine.”

(2]
o

Sensitivity, %
3

“Google just published this paper in JAMA
(impact factor 37) [...] It actually lives up to
the hype.”

N
o

0 20 40 60 80 100

1 - Specificity, %


https://en.wikipedia.org/wiki/F1_score

Pathology

Detecting Cancer Metastases on
Gigapixel Pathology Images

Yun Liul*, Krishna Gadepalli!, Mohammad Norouzi!, George E. Dahl!,
Timo Kohlberger!, Aleksey Boyko!, Subhashini Venugopalan?**,
Aleksei Timofeev?, Philip Q. Nelson?, Greg S. Corrado', Jason D. Hipp?,
Lily Peng!, and Martin C. Stumpe?

{liuyun,mnorouzi,gdahl,lhpeng,mstumpe }@google . com

1Google Brain, 2Google Inc, *Verily Life Sciences,
Mountain View, CA, USA

Tumor localization score (FROC):
model: 0.89
pathologist: 0.73

arxiv.org/abs/1703.02442

Radiology
Acta Orthopaedica

Research-article

Artificial intelligence for analyzing orthopedic trauma
radiographs

Deep learning algorithms—are they on par with humans for diagnosing fractures?

Jakub Olczak, Niklas Fahlberg, Atsuto Maki, Ali Sharif Razavian, Anthony Jilert, André Stark, Olof Skéldenberg & Max Gordon & ...show less
Pages 1-6 | Received 01 Mar 2017, Accepted 06 Jun 2017, Published online: 06 Jul 2017

“The network performed similarly to senior orthopedic
surgeons when presented with images at the same resolution
as the network.”

www.tandfonline.com/doi/full/10.1080/17453674.2017.1344459



https://arxiv.org/abs/1703.02442
http://www.tandfonline.com/doi/full/10.1080/17453674.2017.1344459

Engineer better medicines

and maybe...
Make solar energy affordable
Develop carbon sequestration methods
Manage the nitrogen cycle



Predicting Properties of Molecules
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Predicting Properties of Molecules

~ 1072 seconds



Predicting Properties of Molecules

) )
:& — >
O
~ 103

Message Passing Neural Net
| ’H
-\\ /7

~ 1072 seconds

e State of the art results predicting output of expensive quantum chemistry
calculations, but ~300,000 times faster

https://research.googleblog.com/2017/04/predicting-properties-of-molecules-with.html and
https://arxiv.org/abs/1702.05532 and https://arxiv.org/abs/1704.01212 (appeared in ICML 2017)

—

seconds



https://research.googleblog.com/2017/04/predicting-properties-of-molecules-with.html
https://arxiv.org/abs/1702.05532
https://arxiv.org/abs/1704.01212

Reverse engineer the brain



. Connectomics: Reconstructing Neural Circuits from
High-Resolution Brain Imaging

Google



Automated Reconstruction Progress at Google

108 ®---. primates
—_ log scale
s
=3 108 T . whole mouse brain (MPI)
I
C
>
< 104 e
% ol S - mouse cortex (AIBS)
o el fly (HHMI)
D 402 =

“"==-- songbird [100 um]"3
(MPI)

Metric: Expected Run Length (ERL)
Google “mean microns between failure” of automated neuron tracing



New Technology: Flood Filling Networks

Flood-Filling Networks 2d Inference
o 50 100 150
Michat Januszewski Jeremy Maitin-Shepard Peter Li
Google Google Google
mjanuszlgoogle.com jbms@google.com phlikgoogle.com
Jorgen Kornfeld Winfried Denk
Max Planck Institute for Neurobiology Max Planck Institute for Neurobiology
kornfeld@neuro.mpg.de winfried.denk@neuro.mpg.de
Viren Jain
Google

virenlgoogle.com

e Start with a seed point

e Recurrent neural network iteratively
fills out an object based on image
content and its own previous

Google predictions https://arxiv.org/abs/1611.00421



https://arxiv.org/abs/1611.00421

——Flood Filling Networks: 3d Inference




Flood Filling Networks: 3d Inference

N )
B, S

~ 100 pm (10,000 voxels) -

Google



Songbird Brain Wiring Diagram

e Raw data produced by Max Planck
Institute for Neurobiology using serial
block face scanning electron
microscopy

e 10,600 x 10,800 x 5,700 voxels =
~600 billion voxels

e Goal: Reconstruct complete
connectivity and use to test specific
hypotheses related to how biological
nervous systems produce precise,
sequential motor behaviors and perform Courtesy Jorgen Kornfeld & Winfried Denk, MPI
reinforcement learning.

Google



Engineer the tools for scientific discovery



fTensorFIow

http://tensorflow.org/

and

https://github.com/tensorflow/tensorflow

Open, standard software for
general machine learning

Great for Deep Learning in

particular
First released Nov 2015

Apache 2.0 license



http://tensorflow.org/
https://github.com/tensorflow/tensorflow

TensorFlow Goals

Establish common platform for expressing machine learning ideas and systems
Open source it so that it becomes a platform for everyone, not just Google

Make this platform the best in the world for both research and production use



Github Stars

@ scikit-learn/scikit-... @ BVLC/caffe @ MicrosoftCNTK @ torchitorch? @ TheanoTheano @ tensorflow/lensorflo...

O dmlefmznet
65708
‘¢ TensorFlow —

60000

55000

50000

45000

e 08/01/2017

35000 B Microsoftt CNTK 11910
[ Theano/Theano 6690

30000 B torchftorch? 7110
B BVLC/caffe 19380

25000 B scikit-learn/scikit-learn 20250

B tensorflow/tensorflow 65707
[ dmic/mxnet 10590

20000

15000

10000

5000

390
oTM0/2013 05/13/2014 12/30/2014 0812015 04/06/2016 11/24/2016 08/02f2017



e Rapid development, many outside contributors
o ~800+ non-Google contributors to TensorFlow
o 21,000+ commits in 21 months
o Many community created tutorials, models, translations, and projects
m ~16,000 GitHub repositories with ‘TensorFlow' in the title

e Direct engagement between community and TensorFlow team
o 5000+ Stack Overflow questions answered

o 80+ community-submitted GitHub issues responded to weekly

e Growing use in ML classes: Toronto, Berkeley, Stanford, ...



More computational power needed

Deep learning is transforming how we
design computers

Google



Special computation properties

educed about 1.2 1.210
precision xabout0.6 NOT X 127
ok

about 0.7 0. /598933



Special computation properties

educed about 1.2 1.210
precision xabout0.6 NOT X 127
ok
about 0.7 0./398933
handful of N
specific —

operations




In production use for >30 months: used on search
queries, for neural machine translation,
for AlphaGo match, ...

In-Datacenter Performance Analysis of a Tensor Processing
Unit, Jouppi, Young, Patil, Patterson et al., ISCA 2017,
arxiv.org/abs/1704.04760



https://arxiv.org/abs/1704.04760

Tensor Processing Unit v1

Cliff Young will tell you all about TPUv1
at 3 PM today

In pr
queri(]

for AlphaGo match, ...

In-Datacenter Performance Analysis of a Tensor Processing
Unit, Jouppi, Young, Patil, Patterson et al., ISCA 2017,
arxiv.org/abs/1704.04760



https://arxiv.org/abs/1704.04760

TPUv1 is a huge help for inference
But what about training?
Speeding up training hugely important:

for researcher productivity, and
for increasing scale of problems that can be tackled



Tensor Processing Unit v2
4/ 4

00666 N
S & asiE o

Google-designed device for neural net training and mference



TPUV2 Chip

&
R

PoP0Q

16 GB of HBM

600 GB/s mem BW
Scalar unit: 32b float
MXU: 32b float
accumulation but
reduced precision for
multipliers

45 TFLOPS

HBM
8 GB

core

core

scalar unit

scalar unit

v

v

MXU
128x128

MXU
128x128

HBM
8 GB




Tensor Processing Unit v2
4/ 4

. 6009Q Tm@

180 teraflops of computation, 64 GB of HBM memory, 2400 GB/s mem BW
Designed to be connected together into larger configurations
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Programmed via TensorFlow

Same program will run with only minor
modifications on CPUs, GPUs, & TPUs

Will be Available through Google Cloud
Cloud TPU - virtual machine w/180 TFLOPS TPUvZ2 device attached




TensorFlow

RESEARCH CLOUD

Making 1000 Cloud TPUs available for free to top researchers who are
committed to open machine learning research

We’'re excited to see what researchers will do with much more computation!
g.co/tpusignup



http://g.co/tpusignup

Machine learning needs torunin a
growing set of environments

Google



TensorFlow supports many platforms

Android

Raspberry Pi

1st-gen TPU Cloud TPU



TensorFlow supports many languages

—_— C++ Java




TensorFlow Grap

Python Program TensorFlow Graph

import numpy as np ) gludiemv::::'“'
import tensorflow as tf gradients train_min -

# Model parameters / \
W = tf.Variable([.3], tf.float32) Sym | |
b = tf.variable([-.3], tf.float32) <>
# Model input and output . \
x = tf.placeholder(tf.float32) range
linear_model = W * x + b ds:t:g>©
y = tf.placeholder(tf.float32) 7
# loss Rank
loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares D {
# optimizer i
optimizer = tf.train.GradientDescentOptimizer(06.61) Square-
train = optimizer.minimize(loss) 1
# training data '
x_train = [1,2,3,4] \sub
y_train = [0,-1,-2,-3] <+
# training loop 3
add y/

init = tf.global_variables_initializer() ) -
sess = tf.Session()
sess.run(init) # reset values to wrong

for i in range(1000): - oYl
sess.run(train, {x:x_train, y:y_train}) @ init R

e

# evaluate training accuracy

curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x:x_train, y:y_train}) @ train_min Cx>
= "W o . . g alo i init

print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))

https://www.tensorflow.org/get_started/get_started



TensorFlow + XLA Compiler

XLA

XLA:CPU XLA:GPU XLA:TPU

See: https://www.tensorflow.org/performance/xla/

Open-sourced code in
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler

Google


https://www.tensorflow.org/performance/xla/
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler

Why XLA?

TensorFlow Strengths

Interpreted
Expressive
Stateful

=4CuE e "Black-Box" Modular

How do we keep the strengths but add more performance?

Google



JIT Compilation via XLA

XLA program: static, decomposed TF ops

Google

!

Static data types
Math-looking primitive ops

-

0x00000000
0x00000003
0x00000007
0x0000000b

movq (%rdx), %rax
vmovaps (%rax), %xmme
vmulps %xmm@, %xmm@, %xmmo
vmovaps %xmm@, (%rdi)



The Best of Both Worlds

TensorFlow Strengths

Flexible

Expressive

Extensible

Think & write this way...

Google

Interpreted
Dynamic
Stateful

"Black-Box" Modular

Compiled
Static

Pure

Primitives

But get optimization
benefits of these!

IIIII



Machine Learning for
Higher Performance Machine Learning
Models



For large models, model parallelism is important



For large models, model parallelism is important

But getting good performance given multiple
computing devices is non-trivial and non-obvious
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Reinforcement Learning for
Higher Performance Machine Learning Models

Placement »| Environment » Runtime

Update
Placement

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou,
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972



https://arxiv.org/abs/1706.04972

Reinforcement Learning for
Higher Performance Machine Learning Models

Placement model " t | -
(trained via RL) gets acement ___ | Environment |———» Runtime
graph as input + set
of devices, outputs
device placement for
each graph node

Update
Placement

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou,

Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972



https://arxiv.org/abs/1706.04972

Reinforcement Learning for
Higher Performance Machine Learning Models

Placement model S— — Measured time
. . _ 3 i —_— » .
(trained via RL) gets SIVUNE per step gives

graph as input + set RL reward signal
of devices, outputs
device placement for
each graph node

Update
Placement

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou,

Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972



https://arxiv.org/abs/1706.04972

Device Placement with Reinforcement Learning

Placement model (trained  Placement | Envionment |———» Runtime
via RL) gets graph as input
+ set of devices, outputs

device placement for each

graph node Update
Placement

Measured time
per step gives
RL reward signal

Softmax

e W] Nl ol [ M LILIMEL] [
L] L L )
bt kb R e i o i
=100 000000000000000000000000000000000000

Figure 4. RL-based placement of Neural MT graph. Above: encoder, Below: decoder. Devices are denoted by colors, where the Figure 5. RL-based placement of Inception-V3. Devices are denoted by colors, where the transparent color represents an operation on a
transparent color represents an operation on a CPU and each other unique color represents a different GPU. This placement achieves an CPU and each other unique color represents a different GPU. RL-based placement achieves the improvement of 19.7% in running time

improvement of 19.3% in running time compared to the fine-tuned hand-crafted placement. compared to expert-designed placement.
+19.3% faster vs. expert human for neural +19.7% faster vs. expert human for InceptionV3
translation model image model

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou,
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972



https://arxiv.org/abs/1706.04972

Reducing inference cost

Google



Reducing inference cost

e Bad feeling: “I have an awesomely good model that requires
too much (computation, power, memory) to deploy! Oh no!”

Fear not, there are lots of tricks:

e Quantize! Most models tolerate very low precision for
weights (8 bits or even less).
o 4X memory reduction, 4X computation efficiency




Distillation

e Suppose you have a giant, highly accurate model
o (Or maybe an ensemble of many such models)

e Now you want a smaller, cheaper model with almost the
same accuracy (maybe to run on a phone)

Distilling the Knowledge in a Neural Network, Hinton, Vinyals, and Dean. NIPS
Deep Learning Workshop, 2014. http://arxiv.org/abs/1503.02531

P


http://arxiv.org/abs/1503.02531
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The Main Idea

The ensemble implements a function from input to output.
Forget the models in the ensemble and the way they are
parameterized and focus on the function.

e After learning the ensemble, we have our hands on the
function.

e (Can we transfer the knowledge in the function into a single
smaller model?

&



Training

0 0 1 0

) Hard targets
Cow Lion Jaguar .. Car
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-6
(001 L0499 10 Softmax output If we have the ensemble,
Cow Lion Jaguar .. Car ..
we can divide the averaged

logits from the ensemble by
a “temperature” T to get a
much softer distribution.




.001 .04 .95 10 °°
Cow Lion Jaguar Car
.1 .2 .6 0
Cow Lion Jaguar Car

Softmax output If we have the ensemble,
we can divide the averaged

Softened softmax output  10gits from the ensemble by
a “temperature” T to get a
much softer distribution.




.001 .04 .95 10 ~°

. Softmax output If we have the ensemble,
Cow Lion Jaguar .. Car ..
we can divide the averaged
-1 -2 -6 0 Softened softmax output |Og|tS from the ensemble by

Cow Lion Jaguar .. Car a “temperature” T to get a

much softer distribution.

N
. R Zi
Expensive ‘ CXp| —
but ) _ i
accurate pi = 7.
model or Eexp e
- /i

This full distribution conveys lots of
information about the function
implemented by the large ensemble!

&



Softened softmax output DIStI I Iat|0n Hard targets

il .2 .6 0 0 0 1 0
Cow Lion Jaguar .. Car Cow Lion Jaguar .. Car

I

Training objective tries to match both of these




Some Results on Speech

Start with a model that classifies 58.9% of frames correctly.

Use that model to provide soft targets for smaller model (that

also sees hard targets)

e The new model gets 57.0% correct even when trained on
only 3% of the data

e With just hard targets, it only gets to 44.5% correct and then
gets much worse.

Soft targets are a VERY good regularizer!
Also trains much faster (soft targets enrich gradients)

&



A few trends in the kinds of
models we want to train

Google



Bigger models, but sparsely activated

Google



Bigger models, but sparsely activated

Motivation:
Want huge model capacity for large datasets, but
want individual example to only activate tiny
fraction of large model

Google



Per-Example Routing
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Per-Example Routing Each expert has

many parameters
(e.g. 2048x2048 matrix) EI:]
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Per-Example Routing

Each expert has Many experts
many parameters (e.g. 2048)
(e.g. 2048x2048 matrix) EI:]
% "/FH'IDE layer N
o T
—_— —» *.-'"
layer layer : Expert 1 Expert n
Ta
\ 4




Per-Example Routing

/T:JDE layer M
T :
— ; —1 ; —
Gixdy| | Gix),
I::eEr Iz::r Expert
1 i
- — .
f f
. 4
Table 7: Perplexity and BLEU comparison of our method again -art methods on

the Google Production En— Fr dataset.

Model Eval Ewval Test Test Computation Total Training
Perplexaty | BLEU Perpiﬂx( BLEU per Word #Parameters Time

MoE with 2048 Experts 2.60 3127 2.69\ 36.57 100.8M 8.690B 1 day/64 k40s

GNMT (Wu et al., 2016) 2.78 35.80 2.87 '\ 35.56 214.2M 246.9M 6 days/96 kBOs

Outrageously Large Neural Networks: The Sparsely-gated Mixture-of-Experts Layer,
Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le & Jeff Dean
Appeared in ICLR 2017, https://openreview.net/pdf?id=B1ckMDqlg



https://openreview.net/pdf?id=B1ckMDqlg

Automated machine learning
(“learning to learn”)

Google



Current:
Solution = ML expertise + data + computation



Current:
Solution = ML expertise + data + computation

Can we turn this into:
Solution = data + 100X computation

27?77



Early encouraging signs

(1) Reinforcement learning-based architecture search
(2) Learn how to optimize



NEURAL ARCHITECTURE SEARCH WITH
REINFORCEMENT LEARNING

Barret Zoph; Quoc V. Le Appeared in ICLR 2017

Google Brain
{barretzoph, gvl}@google.com

Idea: model-generating model trained via RL

(1) Generate ten models

(2) Train them for a few hours

(3) Use loss of the generated models as reinforcement
learning signal

arxiv.org/abs/1611.01578



CIFAR-10 Image Recognition Task

Model | Depth Parameters | Error rate (%)

Network in Network (Lin et al., 2013) - - 8.81
All-CNN (Springenberg et al., 2014) - - 7.25
Deeply Supervised Net (Lee et al., 2015) - - 7.97
Highway Network (Srivastava et al., 2015) - - 7.72
Scalable Bayesian Optimization (Snoek et al., 2015) - - 6.37
FractalNet (Larsson et al., 2016) 21 3B.eM 522
with Dropout/Drop-path 21 38.6M 4.60
ResNet (He et al., 2016a) | 110 1.7M | 6.61
ResNet (reported by Huang et al. (2016b)) | 110 1.7M | 6.41
ResNet with Stochastic Depth (Huang et al., 2016b) 110 1.7M 5.23
1202 10.2M 4.91
Wide ResNet (Zagoruyko & Komodakis, 2016) 16 11.0M 4.81
28 36.5M 4.17
ResNet (pre-activation) (He et al., 2016b) 164 1.7M 5.46
1001 10.2M 4.62
DenseNet (L = 40, k = 12) Huang et al. (2016a) 40 1.0M 5.24
DenseNet(L = 100, k = 12) Huang et al. (2016a) 100 7.0M 4 1(]

DenseNet (L = 100, k = 24) Huang et al. (2016a) 100 27.2M
Neural Architecture Search v1 no stride or pooling 15 4.2M 5.50
image Neural Architecture Search v2 predicting strides 20 2.5M 6.01

. 7 7 7 Neural Architecture Search v3 max pooling 39 T1M 4 4
have stidesof pooling ayers. FH i e height, FW 3 ltr widh and N fs prbes of Aers, Neural Architecture Search v3 max pooling + more filters | 39 32.0M

Table 1: Performance of Neural Architecture Search and other state-of-the-art models on CIFAR-10.



Penn Tree Bank Language Modeling Task
“‘Normal” LSTM cell

Model | Parameters Test Perplexity

Mikolov & Zweig (2012) - KN-3 2M* 141.2
Mikolov & Zweig (2012) - KNS + cache 2M* 125.7
Mikolov & Zweig (2012) - RNN 6M* 124.7
Mikolov & Zweig (2012) - RNN-LDA ™* 113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache OM* 92.0
Pascanu et al. (2013) - Deep RNN 6M 107.5
Cheng et al. (2014) - Sum-Prod Net sM* 100.0
Zaremba et al. (2014) - LSTM (medium) 20M 82.7
Zaremba et al. (2014) - LSTM (large) HAEM 8.4
Gal (2015) - Variational LSTM (medium, untied) 20M 9.7
Gal (2015) - Variational LSTM (medium, untied, MC) 20M T8.6
Gal (2015) - Variational LSTM (large, untied) HAM 0.2
H Gal (2015) - Variational LSTM (large, untied, MC) HAM 73.4
Ce” dlscovered by Kim et al. (2015} - CharCNN 19M 78.9
T Press & Wolf (2016) - Variational LSTM, shared embeddings 24M 74.2
arCh IteCtu re SearCh Merity et al. (2016) - Zoneout + Variational LSTM (medium) 20M 80.6
' 3 Merity et al. (2016) - Pointer Sentinel-LSTM (medium) 21IM 70.9

Zilly et al. (2016) - Variational RHN, shared embeddings 24M [66.0]
Neural Architecture Search with base 8 32ZM 67.9
Neural Architecture Search with base 8 and shared embeddings 25M 64,0

Neural Architecture Search with base 8 and shared embeddings 54M I 62.4 I

Table 2: Single model perplexity on the test set of the Penn Treebank language modeling task.
Parameter numbers with + are estimates with reference to Merity et al. (2016).
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Vijay Vasudevan, Jonathon Shlens and Quoc Le, https://arxiv.org/abs/1707.07012
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Learn the Optimization Update Rule



Commonly Used Human-Designed Optimizers

parameters += learning rate * expression
SGD: g
Momentum: ¢ +ym
ADAM: m/ Vo
RMSProp:  9/Vv

Where:
g gradient

M bias-corrected running average of the gradient

U bias-corrected running average of the squared gradient



Learn the Optimization Update Rule

Sample update rule U
with probability p

[ y

Trains the child network
The controller (RNN) with update rule
U to get accuracy R

\ J

Compute gradient of p and
scale it by R to update
the controller

Figure 1. Overview of Neural Optimizer Search.

Neural Optimizer Search using Reinforcement Learning, Irwan Bello, Barret Zoph,
Vijay Vasudevan, and Quoc Le, ICML 2017, proceedings.mir.press/v70/bello17a/bello17a.pdf
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1st 2nd Unary Unary Binary 1st 2nd
Softmax operand | operand | ops ops ops operand [ operand |
\ \ \ \ \ \
A \ A \ A | A | A A \ A |
state | 1 1 1 | 1
A | A I A 1 A 1 A A | A |
| | | | | | 1
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Embedding ‘ ! i " " ! 1 v
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\ \ \ \ \ L \
<start> <’ <! o it o # /
< 1st group

2nd group ——
Figure 3. Overview of the controller RNN. The controller iteratively selects subsequences of length 5. It first selects the 1st and 2nd

operands op; and op,, then 2 unary functions u; and wu, to apply to the operands and finally a binary function b that combines the

outputs of the unary functions. The resulting b(u1(op1), u2(op2)) then becomes an operand that can be selected in the subsequent group
of predictions or becomes the update rule. Every prediction is carried out by a softmax classifier and then fed into the next time step as
input.

The operands, unary functions and binary functions that are
accessible to our controller are as follows:

e Unary functions which map input z to: =z, e”,

log ||, clip(z,107%), clip(z,10~%), clip(z,10~3),

drop(z,0.1), drop(z, 0.3) or drop(z, 0.5).
e Operands: g, g°, g°, mh, 1,

4, sign(g), sign(rm),
sign(g) * sign(m), 1, small constant noise, 10w,

¢ Binary functions which map (z, y) to z +y (addition),
103w, 10~ 2w, 10~ 'w, ADAM and RMSProp.

z — y (subtraction),  * y (multiplication), ﬁ (divi-
sion) or z (keep left). '



Optimizer \ Final Val Final Test Best Val Best Test

SGD 92.0 91.8 929 91.9
Momentum 92.7 92.1 93.1 % |
ADAM 90.4 90.1 91.8 T
RMSProp 90.7 90.3 914 90.3

Table |. Performance of Neural Optimizer Search and standard optimizers on the Wide-ResNet architecture (Zagoruyko & Komodakis,
2016) on CIFAR-10. Final Val and Final Test refer to the final validation and test accuracy after for training for 300 epochs. Best Val
corresponds to the best validation accuracy over the 300 epochs and Best Test is the test accuracy at the epoch where the validation
accuracy was the highest.



Optimizer Final Val Final Test Best Val Best Test
SGD 92.0 91.8 92.9 91.9
Momentum 92.7 92.1 93.1 % |
ADAM 90.4 90.1 91.8 T
RMSProp 90.7 90.3 91.4 90.3
[esiEnla) sign(m) 4 clip(g,107%)] % g 92.5 92.4 93.8 93.1
clip(rin, 107%) % €” 93.5 92.5 93.8 92.7
1 x e’ 93.1 92.4 93.8 92.6
g x ¢*ign(g)rsign(m) 93.1 92.8 93.8 92.8
drop(g, 0.3) * e*isn{g)+sign(m) 92.7 92.2 93.6 92.7
h*ed 93.1 92.5 93.6 92.4
drop(ii,0.1)/(e?” + €) 92.6 92.4 93.5 93.0
drop(g, 0.1) * eSign{9)+sign(m) 92.8 92.4 93.5 922
clip(RMSProp, 107°) + drop(ri, 0.3) 90.8 90.8 91.4 90.9
ADAM « e*ign(g)*sign(m) 92.6 92.0 93.4 92.0
ADAM xe™ 92.9 92.8 93.3 92.7
g + drop(ri, 0.3) 93.4 92.9 93.7 92.9
drop(ri, 0.1) * €7 92.8 92.7 93.7 92.8
g — clip(g?,107%) 93.4 92.8 93.7 92.8
e? —e™ 93.2 92.5 93.5
drop(ri, 0.3) * e* 93.2 93.0 93.5 93.2

Table |. Performance of Neural Optimizer Search and standard optimizers on the Wide-ResNet architecture (Zagoruyko & Komodakis,
2016) on CIFAR-10. Final Val and Final Test refer to the final validation and test accuracy after for training for 300 epochs. Best Val
corresponds to the best validation accuracy over the 300 epochs and Best Test is the test accuracy at the epoch where the validation
accuracy was the highest.



Optimizer Train perplexity Test BLEU
Adam 1.49 24.5
g x eSign(g)sign(m) 1.39 25.0

Table 2. Performance of our optimizer versus ADAM in a state-
of-the-art GNMT model on WMT 2014 English — German.



What might a plausible future look like?

Combine many of these ideas:
Large model, but sparsely activated
Single model to solve many tasks (100s to 1Ms)
Dynamically learn and grow pathways through large model
Hardware specialized for ML supercomputing
ML for efficient mapping onto this hardware

Google
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Questions/open-problems at the intersection of
machine learning and systems/computer
architecture

Google



Questions/Open Issues

Do dramatically different numerics make sense (e.g. 1- or
2-bit activations/parameters?)

How can we deal efficiently with very dynamic models
(different graph for every input example), especially on very
large scale machines?

What new approaches can help us with the problem of

diminishing returns from larger batch sizes?
o If we could train with batch_size = 1M, that would make things much easier

What ML algorithms/approaches will be important in 3-4
years?
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Conclusions

Deep neural networks are making significant strides in
speech, vision, language, search, robotics, healthcare, ...

They are also dramatically reshaping our computational
devices

If you're not considering how to use deep neural nets to solve
your problems, you almost certainly should be
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